Олимпиадные задачи по математике для 6-7 класса
Числа <i>a, b, c</i> таковы, что <i>a</i>²(<i>b + c</i>) = <i>b</i>²(<i>a + c</i>) = 2008 и <i>a ≠ b</i>. Найдите значение выражения <i>c</i>²(<i>a + b</i>).
Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif"> делится на <i>p</i><sub>2</sub>, <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif"> делится на <i>p</i><sub>3</sub>, ..., <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif"> делится на <i>p</i><sub>1</sub>?
Может ли в наборе из шести чисел (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>}, где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?
Для некоторых натуральных чисел <i>a, b, c</i> и <i>d</i> выполняются равенства <i><sup>a</sup>/<sub>c</sub> = <sup>b</sup>/<sub>d</sub></i> = <sup><i>ab</i>+1</sup>/<sub><i>cd</i>+1</sub>. Докажите, что <i>a = c</i> и <i>b = d</i>.
В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Существуют ли различные взаимно простые в совокупности натуральные числа <i>a, b</i> и <i>c</i>, большие 1 и такие, что 2<i><sup>a</sup></i> + 1 делится на <i>b</i>, 2<i><sup>b</sup></i> + 1 делится на <i>c</i>, а 2<i><sup>c</sup></i> + 1 делится на <i>a</i>?
Существуют ли действительные числа<i> a </i>,<i> b </i>и<i> c </i>такие, что при всех действительных<i> x </i>и<i> y </i>выполняется неравенство <center><i>
|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|? </i></center>
Натуральные числа <i>x</i> и <i>y</i> таковы, что 2<i>x</i>² – 1 = <i>y</i><sup>15</sup>. Докажите, что если <i>x</i> > 1, то <i>x</i> делится на 5.
Найдите все целые числа <i>x</i> и <i>y</i>, удовлетворяющие уравнению <i>x</i><sup>4</sup> – 2<i>y</i>² = 1.
Пусть <i>a, b, c</i> – стороны треугольника. Докажите неравенство <i>a</i>³ + <i>b</i>³ + 3<i>abc > c</i>³.
Найдите какие-нибудь четыре попарно различных натуральных числа <i>a, b, c, d</i>, для которых числа <i>a</i>² + 2<i>cd + b</i>² и <i>c</i>² + 2<i>ab + d</i>² являются полными квадратами.
В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.
В треугольнике <i>ABC</i> отрезки <i>CM</i> и <i>BN</i> – медианы, <i>P</i> и <i>Q</i> – точки соответственно на <i>AB</i> и <i>AC</i> такие, что биссектриса угла <i>C</i> треугольника одновременно является биссектрисой угла <i>MCP</i>, а биссектриса угла <i>B</i> – биссектрисой угла <i>NBQ</i>. Можно ли утверждать, что треугольник <i>ABC</i> равнобедренный, если
а) <i>BP = CQ</i>;
б) <i>AP = AQ</i>;
в) <i>PQ || BC</i>?
Существуют ли три таких различных простых числа <i>p, q, r</i>, что <i>p</i>² + <i>d</i> делится на <i>qr, q</i>² + <i>d</i> делится на <i>rp, r</i>² + <i>d</i> делится на <i>pq</i>, если
а) <i>d</i> = 10,
б) <i>d</i> =11?
Существует ли такое число <i>n</i> , что числа
а) <i>n</i> – 96, <i>n</i>, <i>n</i> + 96;
б) <i>n</i> – 1996, <i>n</i>, <i>n</i> + 1996
простые? (Все простые числа считаем положительными.)
а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?