Олимпиадные задачи по математике для 7-11 класса - сложность 3 с решениями

Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.

Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства   <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif">   Докажите, что  <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.

Внутри выпуклого многогранника выбрана точка <i>P</i> и несколько прямых  <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>,  проходящих через <i>P</i> и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа  <i>x + y</i>² + <i>z</i>²,  <i>x</i>² + <i>y</i> + <i>z</i>²  и  <i>x</i>² + <i>y</i>² + <i>z</i>  целые. Докажите, что число 2<i>x</i> целое.

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение  <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

Выпуклый четырёхугольник <i>ABCD</i> таков, что  <i>AB</i>·<i>CD</i> = <i>AD</i>·<i>BC</i>.  Докажите, что –∠<i>BAC</i> + ∠<i>CBD</i> + ∠<i>DCA</i> + ∠<i>ADB</i> = 180°.

Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций  <i>y</i> = sin <i>ax</i>,  <i>y</i> = sin <i>bx</i>  и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции  <i>y</i> = sin <i>cx</i>  проходит через все отмеченные точки.

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.

Какое наименьшее количество нулей может быть среди этих чисел?

Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений  <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0,  <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0,  <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе  <i>y = x</i>²,  если

  а)  <i>N</i> = 2011;

  б)  <i>N</i> = 2012?

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).   а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным?   б) Пусть стёрлись <i>k</i> записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем <i>k</i> всегда можно однозначно восстановить стёршиеся записи?

Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что  <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>)  делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что  <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>)  для любого целого <i>n</i>?

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Четырёхугольник <i>ABCD</i> описан около окружности, лучи <i>BA</i> и <i>CD</i> пересекаются в точке <i>E</i>, лучи <i>BC</i> и <i>AD</i> – в точке <i>F</i>. Вписанная окружность треугольника, образованного прямыми <i>AB, CD</i> и биссектрисой угла <i>B</i>, касается прямой <i>AB</i> в точке <i>K</i>, а вписанная окружность треугольника, образованного прямыми <i>AD, BC</i> и биссектрисой угла <i>B</i>, касается прямой <i>BC</i> в точке <i>L</i>. Докажите, что прямые <i>KL, AC</i> и <i>EF</i> пересекаются в одной точке.

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть <i>S</i> – минимальное из этих расстояний. Какое наибольшее значение может принимать <i>S</i>?

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?

Найдите все такие тройки действительных чисел <i>x, y, z</i>, что  1 + <i>x</i><sup>4</sup> ≤ 2(<i>y – z</i>)² 1 + <i>y</i><sup>4</sup> ≤ 2(<i>z – x</i>)²,  1 + <i>z</i><sup>4</sup> ≤ 2(<i>x – y</i>)².

Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  <i>x</i>² – <i>ax + b</i> = 0  и  <i>x</i>² – <i>bx + a</i> = 0  имеет два целых корня?

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?

На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.

Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.

Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при <i>x</i>², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при <i>x</i>, то получатся трёхчлены, имеющие корни.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка