Олимпиадные задачи по математике для 10 класса - сложность 3-4 с решениями

Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.

Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства   <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif">   Докажите, что  <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.

Внутри выпуклого многогранника выбрана точка <i>P</i> и несколько прямых  <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>,  проходящих через <i>P</i> и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение  <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

Выпуклый четырёхугольник <i>ABCD</i> таков, что  <i>AB</i>·<i>CD</i> = <i>AD</i>·<i>BC</i>.  Докажите, что –∠<i>BAC</i> + ∠<i>CBD</i> + ∠<i>DCA</i> + ∠<i>ADB</i> = 180°.

Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций  <i>y</i> = sin <i>ax</i>,  <i>y</i> = sin <i>bx</i>  и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции  <i>y</i> = sin <i>cx</i>  проходит через все отмеченные точки.

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.

Какое наименьшее количество нулей может быть среди этих чисел?

Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений  <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0,  <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0,  <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе  <i>y = x</i>²,  если

  а)  <i>N</i> = 2011;

  б)  <i>N</i> = 2012?

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).   а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным?   б) Пусть стёрлись <i>k</i> записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем <i>k</i> всегда можно однозначно восстановить стёршиеся записи?

Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что  <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>)  делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что  <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>)  для любого целого <i>n</i>?

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Четырёхугольник <i>ABCD</i> описан около окружности, лучи <i>BA</i> и <i>CD</i> пересекаются в точке <i>E</i>, лучи <i>BC</i> и <i>AD</i> – в точке <i>F</i>. Вписанная окружность треугольника, образованного прямыми <i>AB, CD</i> и биссектрисой угла <i>B</i>, касается прямой <i>AB</i> в точке <i>K</i>, а вписанная окружность треугольника, образованного прямыми <i>AD, BC</i> и биссектрисой угла <i>B</i>, касается прямой <i>BC</i> в точке <i>L</i>. Докажите, что прямые <i>KL, AC</i> и <i>EF</i> пересекаются в одной точке.

По кругу стоят2009целых неотрицательных чисел, не превышающих 100. Разрешается прибавить по1к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более<i> k </i> раз. При каком наименьшем<i> k </i>все числа гарантированно можно сделать равными?

В треугольной пирамиде <i> ABCD </i>все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках <i> ABC </i>,<i> ABD </i>,<i> ACD </i>лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер <i> AB </i>,<i> AC </i>,<i> AD </i>.

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть <i>S</i> – минимальное из этих расстояний. Какое наибольшее значение может принимать <i>S</i>?

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

Найдите все такие тройки действительных чисел <i>x, y, z</i>, что  1 + <i>x</i><sup>4</sup> ≤ 2(<i>y – z</i>)² 1 + <i>y</i><sup>4</sup> ≤ 2(<i>z – x</i>)²,  1 + <i>z</i><sup>4</sup> ≤ 2(<i>x – y</i>)².

Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  <i>x</i>² – <i>ax + b</i> = 0  и  <i>x</i>² – <i>bx + a</i> = 0  имеет два целых корня?

В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i>  (2 ≤ <i>k ≤ N</i>)  при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить  2<i>k</i> – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

Существуют ли такие ненулевые числа <i>a, b, c</i>, что при любом  <i>n</i> > 3  можно найти многочлен вида  <i>P<sub>n</sub></i>(<i>x</i>) = <i>x<sup>n</sup> + ... + ax</i>² + <i>bx + c</i>,  имеющий ровно <i>n</i> (не обязательно различных) целых корней?

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.

Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка