Олимпиадные задачи по математике - сложность 2 с решениями
Дан выпуклый шестиугольник <i>ABCDEF</i>. Известно, что ∠<i>FAE</i> = ∠<i>BDC</i>, а четырёхугольники <i>ABDF</i> и <i>ACDE</i> являются вписанными.
Докажите, что прямые <i>BF</i> и <i>CE</i> параллельны.
В трапеции <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> лучи <i>AB</i> и <i>DC</i> пересекаются в точке <i>K</i>. Точки <i>P</i> и <i>Q</i> – центры описанных окружностей треугольников <i>ABD</i> и <i>BCD</i>. Докажите, что ∠<i>PKA</i> = ∠<i>QKD</i>.
Один треугольник лежит внутри другого.
Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.
Пусть <i>AH<sub>a</sub></i> и <i>BH<sub>b</sub></i> – высоты треугольника <i>ABC, P</i> и <i>Q</i> – проекции точки <i>H<sub>a</sub></i> на стороны <i>AB</i> и <i>AC</i>. Докажите, что прямая <i>PQ</i> делит отрезок <i>H<sub>a</sub>H<sub>b</sub></i> пополам.
Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?
На стороне <i>BC</i> ромба <i>ABCD</i> выбрана точка <i>M</i>. Прямые, проведённые через <i>M</i> перпендикулярно диагоналям <i>BD</i> и <i>AC</i>, пересекают прямую <i>AD</i> в точках <i>P</i> и <i>Q</i> соответственно. Оказалось, что прямые <i>PB, QC</i> и <i>AM</i> пересекаются в одной точке. Чему может быть равно отношение <i>BM</i> : <i>MC</i>?
В четырёхугольнике <i>ABCD</i> углы <i>A</i> и <i>C</i> равны. Биссектриса угла <i>B</i> пересекает прямую <i>AD</i> в точке <i>P</i>. Перпендикуляр к <i>BP</i>, проходящий через точку <i>A</i>, пересекает прямую <i>BC</i> в точке <i>Q</i>. Докажите, что прямые <i>PQ</i> и <i>CD</i> параллельны.
Стороны <i>AB, BC, CD</i> и <i>DA</i> четырёхугольника <i>ABCD</i> касаются некоторой окружности в точках <i>K, L, M</i> и <i>N</i> соответственно, <i>S</i> – точка пересечения отрезков <i>KM</i> и <i>LN</i>. Известно, что вокруг четырёхугольника <i>SKBL</i> можно описать окружность. Докажите, что вокруг четырёхугольника <i>SNDM</i> также можно описать окружность.
Окружности $\omega_1$ и $\omega_2$ пересекаются в точках $P$ и $Q$. Пусть $O$ – точка пересечения общих внешних касательных к $\omega_1$ и $\omega_2$. Прямая, проходящая через точку $O$, пересекает $\omega_1$ и $\omega_2$ в точках $A$ и $B$ соответственно, так, что эти две точки лежат по одну сторону от $PQ$. Прямая $PA$ повторно пересекает $\omega_2$ в точке $C$, а прямая $QB$ повторно пересекает $\omega_1$ в точке $D$. Докажите, что $O$, $C$ и $D$ лежат на одной прямой.
Четырехугольник $ABCD$ – вписанный. Окружность, проходящая через точки $A$ и $B$, пересекает диагонали $AC$ и $BD$ в точках $E$ и $F$ соответственно. Пусть прямые $AF$ и $BC$ пересекаются в точке $P$, а прямые $BE$ и $AD$ – в точке $Q$. Докажите, что $PQ$ параллельна $CD$.
Четырехугольник $ABCD$ описан вокруг окружности радиуса $R$. Пусть $h_1$ и $h_2$ – высоты опущенные из точки $A$ на стороны $BC$ и $CD$ соответственно. Аналогично $h_3$ и $h_4$ – высоты опущенные из точки $C$ на стороны $AB$ и $AD$. Докажите, что $$ \frac{h_1+h_2-2R}{h_1h_2}=\frac{h_3+h_4-2R}{h_3h_4}. $$
Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.
На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)
Дан квадрат <i>ABCD, M</i> и <i>N</i> – середины сторон <i>BC</i> и <i>AD</i>. На продолжении диагонали <i>AC</i> за точку <i>A</i> взяли точку <i>K</i>. Отрезок <i>KM</i> пересекает сторону <i>AB</i>
в точке <i>L</i>. Докажите, что углы <i>KNA</i> и <i>LNA</i> равны.
На сторонах <i>AB</i> и <i>AC</i> треугольника <i>ABC</i> выбрали точки <i>P</i> и <i>Q</i> так, что <i>PB = QC</i>. Докажите, что <i>PQ < BC</i>.
Даны две единичные окружности ω<sub>1</sub> и ω<sub>2</sub>, пересекающиеся в точках <i>A</i> и <i>B</i>. На окружности ω<sub>1</sub> взяли произвольную точку <i>M</i>, а на окружности ω<sub>2</sub> точку <i>N</i>. Через точки <i>M</i> и <i>N</i> провели ещё две единичные окружности ω<sub>3</sub> и ω<sub>4</sub>. Обозначим повторное пересечение ω<sub>1</sub> и ω<sub>3</sub> через <i>C</i>, повторное пересечение окружностей ω<sub>2</sub> и ω<sub>4</sub> – через <i>D</i>. Докажите, что <i>ACBD</i> – параллелограмм.
Дан выпуклый четырёхугольник <i>ABCD</i>. Известно, что ∠<i>ABD</i> + ∠<i>ACD</i> > ∠<i>BAC</i> + ∠<i>BDC</i>. Докажите, что <i>S<sub>ABD</sub> + S<sub>ACD</sub> > S<sub>BAC</sub> + S<sub>BDC</sub></i>.
Дан треугольник <i>ABC</i>. <i>M</i> – середина стороны <i>BC</i>, а <i>P</i> – проекция вершины <i>B</i> на серединный перпендикуляр к <i>AC</i>. Прямая <i>PM</i> пересекает сторону <i>AB</i> в точке <i>Q</i>. Докажите, что треугольник <i>QPB</i> равнобедренный.
Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)