Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 10 класса - сложность 2 с решениями
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
<i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в трёхчлен <i>Q</i>(<i>x</i>), равна сумме двух чисел, получаемых при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в трёхчлен <i>P</i>(<i>x</i>). Докажите, что дискриминанты трёхчленов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) равны.
Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Натуральные числа <i>a, b</i> и <i>c</i>, где <i>c</i> ≥ 2, таковы, что <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> = <sup>1</sup>/<sub><i>c</i></sub>. Докажите, что хотя бы одно из чисел <i>a + c, b + c</i> – составное.
В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.
30 девочек – 13 в красных платьях и 17 в синих платьях – водили хоровод вокруг новогодней ёлки. Впоследствии каждую из них спросили, была ли её соседка справа в синем платье. Оказалось, что правильно ответили те и только те девочки, которые стояли между девочками в платьях одного цвета. Сколько девочек могли ответить утвердительно?
Ненулевые числа <i>a</i> и <i>b</i> таковы, что уравнение <i>a</i>(<i>x – a</i>)² + <i>b</i>(<i>x – b</i>)² = 0 имеет единственное решение. Докажите, что |<i>a| = |b</i>|.
По кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)
Окружность, вписанная в прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>, касается его сторон <i>BC, CA, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Пусть <i>B</i><sub>1</sub><i>H</i> – высота треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что точка <i>H</i> лежит на биссектрисе угла <i>CAB</i>.
Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что <i>M</i> = 3<i>N</i>. Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?
В остроугольном треугольнике <i>ABC</i> проведены биссектриса <i>AD</i> и высота <i>BE</i>. Докажите, что ∠<i>CED</i> > 45°.
Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?
По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.
Пусть <i>a</i><sub>1</sub>, ..., <i>a</i><sub>11</sub> – различные натуральные числа, не меньшие 2, сумма которых равна 407.
Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 22 числа <i>a</i><sub>1</sub>, ..., <i>a</i><sub>11</sub>, 4<i>a</i><sub>1</sub>, 4<i>a</i><sub>2</sub>, ..., 4<i>a</i><sub>11</sub> равняться 2012?
Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений <i>F</i>(<i>x</i>) = 0, <i>G</i>(<i>x</i>) = 0, <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).
Натуральные числа <i>d</i> и <i>d' > d</i> – делители натурального числа <i>n</i>. Докажите, что <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
На доске написаны девять приведённых квадратных трёхчленов: <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub> и <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub> – арифметические прогрессии. Оказалось, что сумма все...
Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?
Приведённый квадратный трёхчлен <i>P</i>(<i>x</i>) таков, что многочлены <i>P</i>(<i>x</i>) и <i>P</i>(<i>P</i>(<i>P</i>(<i>x</i>))) имеют общий корень. Докажите, что <i>P</i>(0)<i>P</i>(1) = 0.
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно <i>n</i> побед, а каждая команда второй группы – ровно <i>m</i> побед. Могло ли оказаться, что <i>m</i> ≠ <i>n</i>?
На плоскости нарисованы <i>n</i> > 2 различных векторов <i><b>a</b></i><sub>1</sub>, <i><b>a</b></i><sub>2</sub>, ..., <i><b>a</b><sub>n</sub></i> с равными длинами. Оказалось, что все векторы –<i><b>a</b></i><sub>1</sub> + <i><b>a</b></i><sub>2</sub> + ... + <i><b>a</b><sub>n</sub></i>,
<i><b>a</b></i><sub>1</sub> – <i><b>a</b></i><sub>2</sub> + <i><b>a</b></i><sub>3</sub> + ... + <i><b>a</b><sub>n</sub></i>, <...
Через вершины основания четырёхугольной пирамиды <i>SABCD</i> проведены прямые, параллельные противоположным боковым рёбрам (через вершину <i>A</i> – параллельно <i>SC</i>, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник <i>ABCD</i> – параллелограмм.
Петя выбрал натуральное число <i>a</i> > 1 и выписал на доску пятнадцать чисел 1 + <i>a</i>, 1 + <i>a</i>², 1 + <i>a</i>³, ..., 1 + <i>a</i><sup>15</sup>. Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?