Олимпиадные задачи из источника «1998-1999» - сложность 3 с решениями

Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?

В коробке лежит полный набор костей домино. Два игрока по очереди выбирают из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не может сделать очередной ход. Кто выиграет при правильной игре?

Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут быть различны. Разрешается соединять любые баллоны друг с другом в количестве, не превосходящем заданного натурального числа <i>k</i>, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем <i>k</i> существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?

К натуральному числу<i> A </i>приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до<i> A </i>. Найдите<i> A </i>.

Отец с двумя сыновьями отправились навестить бабушку, которая живёт в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром – 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идёт по дороге со скоростью 5 км/ч. Докажите, что все трое могут добраться до бабушки за 3 часа.

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.

(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

Все клетки клетчатой плоскости окрашены в 5 цветов так, что в любой фигуре вида<center> <img src="/storage/problem-media/110013/problem_110013_img_2.gif"> </center>все цвета различны. Докажите, что и в любой фигуре вида<center> <img src="/storage/problem-media/110013/problem_110013_img_3.gif"> </center>все цвета различны.

Лабиринт представляет собой квадрат 8×8, в каждой клетке 1×1 которого нарисована одна из четырёх стрелок (вверх, вниз, вправо, влево). Верхняя сторона правой верхней клетки – выход из лабиринта. В левой нижней клетке находится фишка, которая каждым своим ходом перемещается на одну клетку в направлении, указанном стрелкой. После каждого хода стрелка в клетке, в которой только что была фишка, поворачивается на 90° по часовой стрелке. Если фишка должна сделать ход, выводящий ее за пределы квадрата 8×8, она остается на месте, а стрелка также поворачивается на 90° по часовой стрелке. Докажите, что рано или поздно фишка выйдет из лабиринта.

Произведение положительных чисел <i>x, y</i> и <i>z</i> равно 1.

Докажите, что если  <sup>1</sup>/<sub><i>x</i></sub> + <sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<i><sub>z</sub> ≥ x + y + z</i>,  то для любого натурального <i>k</i> выполнено неравенство  <i>x<sup>–k</sup> + y<sup>–k</sup> + z<sup>–k</sup> ≥ x<sup>k</sup> + y<sup>k</sup> + z<sup>k</sup></i>.

Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.

Докажите, что найдётся пара отмеченных чисел, одно из которых делится на другое.

Каждый голосующий на выборах вносит в избирательный бюллетень фамилии<i> n </i>кандидатов. На избирательном участке находится<i> n+</i>1урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе(<i>n+</i>1)-го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.

В пространстве даны<i> n </i>точек общего положения (никакие три не лежат на одной прямой, никакие четыре не лежат в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы<i> n-</i>3точки в пространстве ни взять, найдется плоскость из проведенных, не содержащая ни одной из этих<i> n-</i>3точек.

Клетки квадрата50×50раскрашены в четыре цвета. Докажите, что существует клетка, с четырех сторон от которой (т.е. сверху, снизу, слева и справа) имеются клетки одного с ней цвета (не обязательно соседние с этой клеткой).

Существуют ли действительные числа<i> a </i>,<i> b </i>и<i> c </i>такие, что при всех действительных<i> x </i>и<i> y </i>выполняется неравенство <center><i>

|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|? </i></center>

В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.

О функции<i> f</i>(<i>x</i>), заданной на всей действительной прямой, известно, что при любом<i> a></i>1функция<i> f</i>(<i>x</i>)<i>+f</i>(<i>ax</i>)непрерывна на всей прямой. Докажите, что<i> f</i>(<i>x</i>)также непрерывна на всей прямой.

Докажите, что при любом натуральном <i>n</i> справедливо неравенство   <img align="absmiddle" src="/storage/problem-media/109704/problem_109704_img_2.gif">

Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на <i>n</i> частей (на рисунке  <i>n</i> = 5). <div align="center"><img src="/storage/problem-media/109703/problem_109703_img_2.gif"></div>Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?

Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?

В стране несколько городов, некоторые пары городов соединены беспосадочными рейсами одной из <i>N</i> авиакомпаний, причём из каждого города есть ровно по одному рейсу каждой из авиакомпаний. Известно, что из каждого города можно долететь до любого другого (возможно, с пересадками). Из-за финансового кризиса был закрыт  <i>N</i> – 1  рейс, но ни в одной из авиакомпаний не закрыли более одного рейса. Докажите, что по-прежнему из каждого города можно долететь до любого другого.

Для некоторых положительных чисел <i>x</i> и <i>y</i> выполняется неравенство  <i>x</i>² + <i>y</i>³ ≥ <i>x</i>³ + <i>y</i><sup>4</sup>.  Докажите, что  <i>x</i>³ + <i>y</i>³ ≤ 2.

Сумма цифр в десятичной записи натурального числа<i> n </i>равна 100, а сумма цифр числа44<i>n </i>равна 800. Чему равна сумма цифр числа3<i>n </i>?

Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>

На столе стоят три пустых банки из-под меда. Винни-Пух, Кролик и Пятачок по очереди кладут по одному ореху в одну из банок. Их порядковые номера до начала игры определяются жребием. При этом Винни может добавлять орех только в первую или вторую банку, Кролик – только во вторую или третью, а Пятачок – в первую или третью. Тот, после чьего хода в какой-нибудь банке оказалось ровно 1999 орехов, проигрывает. Докажите, что Винни-Пух и Пятачок могут, договорившись, играть так, чтобы Кролик проиграл.

Через вершину <i>A</i> тетраэдра <i>ABCD </i> проведена плоскость, касательная к описанной около него сфере. Докажите, что линии пересечения этой плоскости с плоскостями граней <i>ABC, ACD</i> и <i>ABD</i> образуют шесть равных углов тогда и только тогда, когда  <i>AB·CD = AC·BD = AD·BC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка