Олимпиадные задачи из источника «30 турнир (2008/2009 год)» для 10 класса - сложность 1-3 с решениями
30 турнир (2008/2009 год)
НазадДокажите, что при любых натуральных 0 <<i>k</i><<i>m < n</i> числа <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif"> не взаимно просты.
Дана такая возрастающая бесконечная последовательность натуральных чисел<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
<div align="center"><img src="/storage/problem-media/111915/problem_111915_img_2.gif"></div>Угол <i>B</i> при вершине равнобедренного треугольника <i>ABC</i> равен 120°. Из вершины <i>B</i> выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания <i>AC</i> в точках <i>P</i> и <i>Q</i>, попали на боковые стороны в точки <i>M</i> и <i>N</i> (см. рис.). Докажите, что площадь треугольника <i>PBQ</i> равна сумме площадей треугольников <i>AMP</i> и <i>CNQ</i>.
В каждой клетке квадрата 101<i>×</i>101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?
Дана неравнобокая трапеция <i>ABCD</i>. Точка <i>A</i><sub>1</sub> – это точка пересечения описанной окружности треугольника <i>BCD</i> с прямой <i>AC</i>,
отличная от <i>C</i>. Аналогично определяются точки <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub>, <i>D</i><sub>1</sub>. Докажите, что <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> – тоже трапеция.
На столе лежат <i>N</i> > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого <i>N</i> выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Пространство разбито на одинаковые кубики. Верно ли, что для каждого из этих кубиков обязательно найдётся другой, имеющий с ним общую грань?
Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.
На сторонах <i>AC</i> и <i>BC</i> неравнобедренного треугольника <i>ABC</i> во внешнюю сторону построены как на основаниях равнобедренные треугольники <i>AB'C</i> и <i>CA'B</i> с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины <i>C</i> к отрезку <i>A'B'</i>, пересекает серединный перпендикуляр к отрезку <i>AB</i> в точке <i>C</i><sub>1</sub>. Найдите угол <i>AC</i><sub>1</sub><i>B</i>.
Даны положительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>. Известно, что <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> ≤ ½. Докажите, что (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) < 2.
Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?
На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.
Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?
В окружность радиуса 2 вписан тридцатиугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>30</sub>. Докажите, что на дугах <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, ..., <i>A</i><sub>30</sub><i>A</i><sub>1</sub> можно отметить по одной точке (<i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, ..., <i>B</i><sub>30</sub> соответственно) так, чтобы площадь шестидесятиугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub>...
Решите систему уравнений (<i>n</i> > 2) <img align="middle" src="/storage/problem-media/111649/problem_111649_img_2.gif"> <img align="middle" src="/storage/problem-media/111649/problem_111649_img_3.gif"> <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub> = 1.
У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.
На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?
Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?
Замок обнесён круговой стеной с девятью башнями, на которых дежурят рыцари. По истечении каждого часа все они переходят на соседние башни, причём каждый рыцарь движется либо все время по часовой стрелке, либо против. За ночь каждый рыцарь успевает подежурить на каждой башне. Известно, что был час, когда на каждой башне дежурили хотя бы два рыцаря, и был час, когда ровно на пяти башнях дежурили ровно по одному рыцарю. Докажите, что был час, когда на одной из башен вообще не было рыцарей.
а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2. б) Найдётся ли выпуклый многоугольник с таким свойством?
Вася и Петя играют в следующую игру. На доске написаны два числа: <sup>1</sup>/<sub>2009</sub> и <sup>1</sup>/<sub>2008</sub>. На каждом ходу Вася называет любое число <i>x</i>, а Петя увеличивает одно из чисел на доске (какое захочет) на <i>x</i>. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?
Внутри некоторого тетраэдра взяли произвольную точку <i>X</i>. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему <i>X</i> с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.
В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно <i>M</i> таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно <i>N</i> таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что <i>M ≥ N</i>.
Для каждого натурального числа <i>n</i> обозначим через <i>O</i>(<i>n</i>) его наибольший нечётный делитель. Даны произвольные натуральные числа
<i>х</i><sub>1</sub> = <i>а</i> и <i>х</i><sub>2</sub> = <i>b</i>. Построим бесконечную последовательность натуральных чисел по правилу: <i>x<sub>n</sub> = O</i>(<i>х</i><sub><i>n</i>–1</sub> + <i>х</i><sub><i>n</i>–2</sub>), где <i>n</i> = 3, 4, ... .
а) Докажите, что, начиная с некоторого места, все числа в последовательности будут равны одному и тому же числу.
б) Как найти это число, зная числа <i>a</i>...