Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс»
весенний тур, сложный вариант, 10-11 класс
НазадДокажите, что при любых натуральных 0 <<i>k</i><<i>m < n</i> числа <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif"> не взаимно просты.
Дана такая возрастающая бесконечная последовательность натуральных чисел<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
Дано целое число <i>n</i> > 1. Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по <i>n</i> точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?
В ячейку памяти компьютера записали число 6. Далее компьютер делает миллион шагов. На шаге номер <i>n</i> он увеличивает число в ячейке на наибольший общий делитель этого числа и <i>n</i>. Докажите, что на каждом шаге компьютер увеличивает число в ячейке либо на 1, либо на простое число.
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.
На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?
Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?