Олимпиадные задачи из источника «30 турнир (2008/2009 год)»

Докажите, что при любых натуральных  0 <<i>k</i><<i>m < n</i>  числа  <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif">  и  <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif">  не взаимно просты.

Дана такая возрастающая бесконечная последовательность натуральных чисел<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?

Дано целое число  <i>n</i> > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по <i>n</i> точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

<div align="center"><img src="/storage/problem-media/111915/problem_111915_img_2.gif"></div>Угол <i>B</i> при вершине равнобедренного треугольника <i>ABC</i> равен 120°. Из вершины <i>B</i> выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания <i>AC</i> в точках <i>P</i> и <i>Q</i>, попали на боковые стороны в точки <i>M</i> и <i>N</i> (см. рис.). Докажите, что площадь треугольника <i>PBQ</i> равна сумме площадей треугольников <i>AMP</i> и <i>CNQ</i>.

В каждой клетке квадрата 101<i>×</i>101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:

  1) в клетке со знаком "прямо" она продолжает путь в том же направлении;

  2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).

Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?

Тест состоит из 30 вопросов, на каждый есть два варианта ответа (один верный, другой нет). За одну попытку Витя отвечает на все вопросы, после чего ему сообщают, на сколько вопросов он ответил верно. Сможет ли Витя действовать так, чтобы гарантированно узнать все верные ответы не позже, чем

  а) после 29-й попытки (и ответить верно на все вопросы при 30-й попытке);

  б) после 24-й попытки (и ответить верно на все вопросы при 25-й попытке)? (Изначально Витя не знает ни одного ответа, тест всегда один и тот же.)

Многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами таков, что уравнение  <i>P</i>(<i>m</i>) + <i>P</i>(<i>n</i>) = 0  имеет бесконечно много решений в целых числах <i>m</i> и <i>n</i>.

Докажите, что у графика  <i>y = P</i>(<i>x</i>)  есть центр симметрии.

Дана неравнобокая трапеция <i>ABCD</i>. Точка <i>A</i><sub>1</sub> – это точка пересечения описанной окружности треугольника <i>BCD</i> с прямой <i>AC</i>,

отличная от <i>C</i>. Аналогично определяются точки <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub>, <i>D</i><sub>1</sub>. Докажите, что <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> – тоже трапеция.

На столе лежат  <i>N</i> > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого <i>N</i> выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

Пространство разбито на одинаковые кубики. Верно ли, что для каждого из этих кубиков обязательно найдётся другой, имеющий с ним общую грань?

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

В бесконечной последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... число <i>a</i><sub>1</sub> равно 1, а каждое следующее число <i>a<sub>n</sub></i> строится из предыдущего <i>a</i><sub><i>n</i>–1</sub> по правилу: если у числа <i>n</i> наибольший нечётный делитель имеет остаток 1 от деления на 4, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> + 1,  если же остаток равен 3, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> – 1.  Докажите, что в этой последовательности

  а) число 1 встреч...

На сторонах <i>AC</i> и <i>BC</i> неравнобедренного треугольника <i>ABC</i> во внешнюю сторону построены как на основаниях равнобедренные треугольники <i>AB'C</i> и <i>CA'B</i> с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины <i>C</i> к отрезку <i>A'B'</i>, пересекает серединный перпендикуляр к отрезку <i>AB</i> в точке <i>C</i><sub>1</sub>. Найдите угол <i>AC</i><sub>1</sub><i>B</i>.

Даны положительные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>.  Известно, что  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> ≤ ½.  Докажите, что  (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) < 2.

Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?

Сережа нарисовал треугольник <i>ABC</i> и провёл в нем медиану <i>AD</i>. Затем он сообщил Илье, какова в этом треугольнике длина медианы <i>AD</i> и какова длина стороны <i>AC</i>. Илья, исходя из этих данных, доказал утверждение: угол <i>CAB</i> тупой, а угол <i>DAB</i> острый. Найдите отношение  <i>AD</i> : <i>AC</i>  (и докажите для любого треугольника с таким отношением утверждение Ильи).

Есть четыре камня, каждый весит целое число граммов. Есть чашечные весы со стрелкой, показывающей, на какой из двух чаш вес больше и на сколько граммов. Можно ли узнать про все камни, сколько какой весит, за четыре взвешивания, если в одном из этих взвешиваний весы могут ошибиться на 1 грамм?

На шахматной доске 100×100 расставлено 100 не бьющих друг друга ферзей.

Докажите, что в каждом угловом квадрате 50×50 находится хотя бы один ферзь.

На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.

Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?

В окружность радиуса 2 вписан тридцатиугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>30</sub>. Докажите, что на дугах <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, ..., <i>A</i><sub>30</sub><i>A</i><sub>1</sub> можно отметить по одной точке (<i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, ..., <i>B</i><sub>30</sub> соответственно) так, чтобы площадь шестидесятиугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub&gt...

Решите систему уравнений  (<i>n</i> > 2)      <img align="middle" src="/storage/problem-media/111649/problem_111649_img_2.gif">   <img align="middle" src="/storage/problem-media/111649/problem_111649_img_3.gif">     <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub> = 1.

У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.

Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

Даны три различных натуральных числа, одно из которых равно полусумме двух других.

Может ли произведение этих трёх чисел являться точной 2008-й степенью натурального числа?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка