Олимпиадные задачи из источника «15 турнир (1993/1994 год)» для 2-9 класса - сложность 3 с решениями
15 турнир (1993/1994 год)
НазадИз точки <i>O</i>, лежащей внутри выпуклого <i>n</i>-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, проведены отрезки ко всем вершинам: <i>OA</i><sub>1</sub>, <i>OA</i><sub>2</sub>, ..., <i> OA<sub>n</sub> </i>. Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами <i>n</i>-угольника – острые, причём ∠<i>OA</i><sub>1</sub><i>A<sub>n</sub></i> ≤ ∠<i>OA</i><sub>1</sub><i>A</i><sub>2</sub>, ∠<i>OA</i><sub>2</sub><i>A</i><sub>1&...
Внутри квадрата <i>ABCD</i> лежит квадрат <i>PQRS</i>. Отрезки <i>AP, BQ, CR</i> и <i>DS</i> не пересекают друг друга и стороны квадрата <i>PQRS</i>.
Докажите, что сумма площадей четырёхугольников <i>ABQP</i> и <i>CDSR</i> равна сумме площадей четырёхугольников <i>BCRQ</i> и <i>DAPS</i>.
Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...
Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>, <i>n</i> > 1, положительны?
В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что
а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;
б) если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя.
Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.
Две окружности пересекаются в точках <i>A</i> и <i>B</i>. В точке <i>A</i> к обеим проведены касательные, пересекающие окружности в точках <i>M</i> и <i>N</i>. Прямые <i>BM</i> и <i>BN</i> пересекают окружности еще раз в точках <i>P</i> и <i>Q</i> (<i>P</i> – на прямой <i>BM, Q</i> – на прямой <i>BN</i>). Докажите, что отрезки <i>MP</i> и <i>NQ</i> равны.
В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон <i>S</i>. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом <i>S</i> за несколько операций можно добиться того, что будут гореть ровно две лампочки.
Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?
Известно, что уравнение <i>x</i><sup>4</sup> + <i>ax</i>³ + 2<i>x</i>² + <i>bx</i> + 1 = 0 имеет действительный корень. Докажите неравенство <i>a</i>² + <i>b</i>² ≥ 8.
В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.)
Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.
(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)
Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:
а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;
б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две.
Через <i>S</i>(<i>n</i>) обозначим сумму цифр числа <i>n</i> (в десятичной записи).
Существуют ли три таких различных натуральных числа <i>m, n</i> и <i>p</i>, что <i>m + S</i>(<i>m</i>) = <i>n+S</i>(<i>n</i>) = <i>p + S</i>(<i>p</i>)?