Олимпиадные задачи из источника «2007 год» для 10 класса
<img align="right" src="/storage/problem-media/109460/problem_109460_img_2.gif">Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?
На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа <i>a, b</i> и <i>c</i>, чтобы это были графики трёхчленов <i>ax</i>² + <i>bx + c, bx</i>² + <i>cx + a</i> и <i>cx</i>² + <i>ax + b</i>? <div align="center"><img src="/storage/problem-media/109457/problem_109457_img_2.gif"></div>
Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если: а) три отрезка имеют равные длины? б) длины двух отрезков равны между собой и не равны длине третьего?
Пусть<i> α </i>и<i> β </i>– острые углы такие, что<i> sin<sup>2</sup>α + sin<sup>2</sup>β < </i>1. Докажите, что<i> sin<sup>2</sup>α + sin<sup>2</sup>β < sin<sup>2</sup></i>(<i>α + β</i>).
Даны таблица 100×100 клеток и <i>N</i> фишек. Рассматриваются все такие расстановки фишек в клетки таблицы, что никакие две фишки не стоят в соседних клетках. При каком наибольшем <i>N</i> в каждой из этих расстановок можно найти хотя бы одну фишку, от перемещения которой в соседнюю клетку заданное условие не нарушится? (Соседними считаются клетки, имеющие общую сторону.)
Решите уравнение: (<i>x</i>³ – 2)(2<sup>sin <i>x</i></sup> – 1) + (2<sup><i>x</i>³</sup> – 4) sin <i>x</i> = 0.
Основанием прямоугольного параллелепипеда <i>АВСDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> является квадрат <i>АВСD</i>.
Найдите наибольшую возможную величину угла между прямой <i>BD</i><sub>1</sub> и плоскостью <i>ВDС</i><sub>1</sub>.
Функция<i> f </i>такова, что для любых положительных<i> x </i>и<i> y </i>выполняется равенство<i> f</i>(<i>xy</i>)<i> = f</i>(<i>x</i>)<i> + f</i>(<i>y</i>). Найдите<i> f</i>(2007), если<i> f</i>(<i><img src="/storage/problem-media/109438/problem_109438_img_2.gif"></i>)<i> = </i>1.
Что больше: <img align="middle" src="/storage/problem-media/109435/problem_109435_img_2.gif"> или <img align="middle" src="/storage/problem-media/109435/problem_109435_img_3.gif"> ?