Олимпиадные задачи из источника «09 (2011 год)» - сложность 3 с решениями
09 (2011 год)
НазадB выпуклом четырёхугольнике <i>ABCD</i>: <i>AC</i> ⊥ <i>BD</i>, ∠<i>BCA</i> = 10°, ∠<i>BDA</i> = 20°, ∠<i>BAC</i> = 40°. Найдите ∠<i>BDC</i>.
Докажите, что любой жесткий плоский треугольник <i>T</i> площади меньше 4 можно просунуть сквозь треугольную дырку <i>Q</i> площади 3.
Дана неравнобокая трапеция <i>ABCD</i> (<i>AB || CD</i>). Окружность, проходящая через точки <i>A</i> и <i>B</i>, пересекает боковые стороны трапеции в точках <i>P</i> и <i>Q</i>, а диагонали – в точках <i>M</i> и <i>N</i>. Докажите, что прямые <i>PQ, MN</i> и <i>CD</i> пересекаются в одной точке.
<i>AD</i> и <i>BE</i> — высоты треугольника <i>ABC</i>. Оказалось, что точка <i>C'</i>, симметричная вершине <i>C</i> относительно середины отрезка <i>DE</i>, лежит на стороне <i>AB</i>. Докажите, что <i>AB</i> – касательная к окружности, описанной около треугольника <i>DEC'</i>.