Олимпиадные задачи из источника «1984 год» - сложность 2-3 с решениями
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.
В некотором царстве, в некотором государстве было выпущено неограниченное количество монет достоинством в <i>n</i><sub>1</sub>, <i>n</i><sub>2</sub>, <i>n</i><sub>3</sub>, ... копеек, где
<i>n</i><sub>1</sub> < <i>n</i> < <sub>2</sub> < <i>n</i><sub>3</sub> < ... – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число <i>N</i>, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в <i>n</i><sub>1</sub>, <i>n</i><sub&g...
Решите в целых числах уравнение 19<i>x</i>³ − 84<i>y</i>² = 1984.
Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу!
Не используя калькуляторов, таблиц и т.п., докажите неравенствоsin 1 < log<sub>3</sub>$\sqrt{7}$.
Существует ли три ненулевые цифры, с помощью которых можно составить бесконечное число десятичных записей квадратов различных целых чисел?
По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.
Каждые две из 13 ЭВМ соединены своим проводом.
Можно ли раскрасить каждый из этих проводов в один из 12 цветов так, чтобы из каждой ЭВМ выходило 12 проводов разного цвета?
Боковые рёбра треугольной пирамиды имеют одинаковую длину, а боковые грани — одинаковую площадь. Докажите, что основание этой пирамиды — равнобедренный треугольник.
Является ли чётным число всех 64-значных натуральных чисел, не содержащих в записи нулей и делящихся на 101?
Сумма пяти неотрицательных чисел равна единице.
Докажите, что их можно расставить по кругу так, что сумма всех пяти попарных произведений соседних чисел будет не больше ⅕.
Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки.
Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
Решите уравнение${\frac{x^3}{\sqrt{4-x^2}}}$+<i>x</i><sup>2</sup>- 4 = 0.
На шахматной доске20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах.
Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и задумался. Какой убыток понёс продавец?
Дорожки в зоопарке образуют равносторонний треугольник, в котором проведены средние линии. Из клетки сбежала обезьянка. Её ловят два сторожа. Смогут ли они поймать обезьянку, если все трое будут бегать только по дорожкам, скорость обезьянки и скорости сторожей равны и они видят друг друга?
Назовём автобусный билет <i>счастливым</i>, если сумма цифр его номера делится на 7. Могут ли два билета подряд быть счастливыми?