Олимпиадные задачи из источника «Математический праздник» - сложность 2 с решениями

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>

Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом?

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.). <div align="center"><img src="/storage/problem-media/116959/problem_116959_img_2.gif"></div>Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?

Пёс и кот одновременно схватили зубами батон колбасы с разных сторон. Если пёс откусит свой кусок и убежит, коту достанется на 300 г больше, чем псу. Если кот откусит свой кусок и убежит, псу достанется на 500 г больше, чем коту. Сколько колбасы останется, если оба откусят свои куски и убегут?

Вот ребус довольно простой:

ЭХ вчетверо больше, чем ОЙ.

АЙ вчетверо больше, чем ОХ.

Найди сумму всех четырёх.

Вася умножил некоторое число на 10 и получил простое число. А Петя умножил то же самое число на 15, но всё равно получил простое число.

Может ли быть так, что никто из них не ошибся?

Вася написал верное утверждение:

  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".

А Коля написал фразу:

  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".

Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

На каждом из двух рукавов реки за километр до их слияния стоит по пристани, а ещё одна пристань стоит в 2 километрах после слияния (см. рисунок). <div align="center"><img src="/storage/problem-media/116611/problem_116611_img_2.gif"></div>Лодка добралась от одной из пристаней до другой (неизвестно, какой) за 30 минут, от другой до третьей за 18 минут. За сколько минут она может добраться от третьей пристани до первой? (Скорость течения реки постоянна и одинакова во всех её частях. Собственная скорость лодки также постоянна.)

Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок).

Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.

Жители острова Невезения, как и мы с вами, делят сутки на несколько часов, час на несколько минут, а минуту на несколько секунд. Но у них в сутках 77 минут, а в часе 91 секунда. Сколько секунд в сутках на острове Невезения?

Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности.

Какова площадь поверхности невидимого бруска?

<center><i> <img align="absmiddle" src="/storage/problem-media/116065/problem_116065_img_2.gif"> </i></center>

Перед футбольным матчем команд "Север" и "Юг" было дано пять прогнозов:

  а) ничьей не будет;

  б) в ворота "Юга" забьют;

  в) "Север" выиграет;

  г) "Север" не проиграет;

  д) в матче будет забито ровно 3 гола.

После матча выяснилось, что верными оказались ровно три прогноза. С каким счётом закончился матч?

Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз). Могли ли оказаться отмечены

  а) все числа, кроме, быть может, двух?

  б) все числа, кроме, быть может, одного?

  в) все числа?

В справочнике "Магия для чайников" написано:

  <i>Замените в слове ЗЕМЛЕТРЯСЕНИЕ одинаковые буквы на одинаковые цифры, а разные – на разные.

  Если полученное число окажется простым, случится настоящее землетрясение.</i>

Возможно ли таким образом устроить землетрясение?

а) Поросенок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы. б) А может ли Наф-Наф добиться, чтобы при этом каждые два квадрата граничили друг с другом?

В конкурсе пения участвовали Петух, Ворона и Кукушка. Каждый член жюри проголосовал за одного из трех исполнителей. Дятел подсчитал, что в жюри было 59 судей, причём за Петуха и Ворону было в сумме подано 15 голосов, за Ворону и Кукушку – 18 голосов, за Кукушку и Петуха – 20 голосов. Дятел считает плохо, но каждое из четырёх названных им чисел отличается от правильного не более чем на 13. Сколько судей проголосовали за Ворону?

Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.

Сколько всего конфет было съедено?

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.

<center><img align="absmiddle" src="/storage/problem-media/115380/problem_115380_img_2.gif"></center> После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть:  а) три;  б) два?

На краю круглого вращающегося стола через равные промежутки стояли 30 чашек с чаем. Мартовский Заяц и Соня сели за стол и стали пить чай из каких-то двух чашек (не обязательно соседних). Когда они допили чай, Заяц повернул стол так, что перед каждым опять оказалось по полной чашке. Когда и эти чашки опустели, Заяц снова повернул стол (возможно на другой угол), и снова перед каждым оказалась полная чашка. И так продолжалось до тех пор, пока весь чай не был выпит. Докажите, что если бы Заяц всегда поворачивал стол так, чтобы его новая чашка стояла через одну от предыдущей, то им бы тоже удалось выпить весь чай (то сеть тоже каждый раз обе чашки оказывались бы полными).

Саша разрезал шахматную доску8<i>× </i>8по границам клеток на30прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.

<center><i> <img align="absmiddle" src="/storage/problem-media/115377/problem_115377_img_2.gif"> </i></center>

В обменном пункте совершаются операции двух типов:

  1) дай 2 евро – получи 3 доллара и конфету в подарок;

  2) дай 5 долларов – получи 3 евро и конфету в подарок.

Когда богатенький Буратино пришел в обменник, у него были только доллары. Когда ушел – долларов стало поменьше, евро так и не появились, зато он получил 50 конфет. Во сколько долларов обошелся Буратино такой "подарок"?

У подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка