Олимпиадные задачи из источника «Книги, журналы» для 3-8 класса

Найдите наименьшее натуральное значение <i>n</i>, при котором число <i>n</i>! делится на 990.

В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.

В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.

Как сыграли между собой шахматисты, занявшие третье и седьмое места?

В параллелограмме <i>ABCD</i>, не являющемся ромбом, проведена биссектриса угла <i>BAD</i>. <i>K</i> и <i>L</i> – точки её пересечения с прямыми <i>BC</i> и <i>CD</i> соответственно. Докажите, что центр окружности, проведённой через точки <i>C</i>, <i>K</i> и <i>L</i>, лежит на окружности, проведённой через точки <i>B</i>, <i>C</i> и <i>D</i>.

Известно, что квадратные уравнения  <i>ax</i>² + <i>bx + c</i> = 0  и  <i>bx</i>² + <i>cx + a</i> = 0  (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.

Найдите его.

Точка <i>O</i>, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

Пусть <i>K, L, M, N</i> – середины сторон <i>AB, BC, CD, AD</i> выпуклого четырёхугольника <i>ABCD</i>; отрезки <i>KM</i> и <i>LN</i> пересекаются в точке <i>O</i>.

Докажите, что   <i>S<sub>AKON</sub> + S<sub>CLOM</sub> = S<sub>BKOL</sub> + S<sub>DNOM</sub></i>.

Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?

Две окружности пересекаются в точках <i>A</i> и <i>B</i>. Через точку <i>A</i> проведена прямая, вторично пересекающая первую окружность в точке <i>C</i>, а вторую – в точке <i>D</i>. Пусть <i>M</i> и <i>N</i> – середины дуг <i>BC</i> и <i>BD</i>, не содержащих точку <i>A</i>, а <i>K</i> – середина отрезка <i>CD</i>. Докажите, что угол <i>MKN</i> прямой. (Можно считать, что точки <i>C</i> и <i>D</i> лежат по разные стороны от точки <i>A</i>.)

В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.

Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.

<center><i> <img src="/storage/problem-media/109632/problem_109632_img_2.gif"> </i></center> Центры<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих о...

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Внутри параллелограмма <i>ABCD</i> выбрана точка <i>O</i>, причём  ∠<i>OAD</i> = ∠<i>OCD</i>.  Докажите, что  ∠<i>OBC</i> = ∠<i>ODC</i>.

Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.

Докажите, что середины его сторон лежат в вершинах квадрата.

На основании <i>AB</i> равнобедренного треугольника <i>ABC</i> выбрана точка <i>D</i> так, что окружность, вписанная в треугольник <i>BCD</i>, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков <i>CA</i> и <i>CD</i> и отрезка <i>AD</i> (вневписанная окружность треугольника <i>ACD</i>). Докажите, что этот радиус равен одной четверти высоты треугольника <i>ABC</i>, опущенной на его боковую сторону.

Докажите, что из всех треугольников данного периметра 2<i>p</i> равносторонний имеет наибольшую плошадь.

В выпуклый четырёхугольник <i>ABCD</i>, у которого углы при вершинах <i>B</i> и <i>D</i> – прямые, вписан четырёхугольник с периметром <i>P</i> (его вершины лежат по одной на сторонах четырёхугольника <i>ABCD</i>).

  а) Докажите неравенство  <i>P</i> ≥ 2<i>BD</i>.

  б) В каких случаях это неравенство превращается в равенство?

Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Описанная окружность треугольника <i>AOB</i> касается прямой <i>BC</i>.

Докажите, что описанная окружность треугольника <i>BOC</i> касается прямой <i>CD</i>.

В плоскости выпуклого четырёхугольника <i>ABCD</i> расположена точка <i>P</i>. Проведены биссектрисы <i>PK,PL, PM</i> и <i>PN</i> треугольников <i>APB, BPC, CPD</i> и <i>DPA</i> соответственно.

  а) Найдите хотя бы одну такую точку <i>P</i>, для которой четырёхугольник <i>KLMN</i> – параллелограмм.

  б) Найдите все такие точки.

Хорды <i>AC</i> и <i>BD</i> окружности с центром <i>O</i> пересекаются в точке <i>K</i>. Пусть <i>M</i> и <i>N</i> – центры описанных окружностей треугольников <i>AKB</i> и <i>CKD</i> соответственно. Докажите, что  <i>OM = KN</i>.

В треугольнике <i>ABC</i> проведены биссектрисы <i>AD</i> и <i>BE</i>. Известно, что <i>DE</i> – биссектриса угла <i>ADC</i>. Найдите величину угла <i>A</i>.

Точка <i>P</i> лежит внутри равнобедренного треугольника <i>ABC</i>  (<i>AB = BC </i>),  причём  ∠<i>ABC</i> = 80°,  ∠<i>PAC</i> = 40°,  ∠<i>ACP</i> = 30°.  Найдите угол <i>BPC</i>.

В трапеции <i>ABCD  AB</i> – основание,  <i>AC = BC</i>,  <i>H</i> – середина <i>AB</i>. Пусть <i>l</i> – прямая, проходящая через точку <i>H</i> и пересекающая прямые <i>AD</i> и <i>BD</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что либо углы <i>ACP</i> и <i>QCB</i> равны, либо их сумма равна 180°.

Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как  <i>a</i> : <i>b</i> : <i>a</i>  (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях  <i>a</i> : <i>b</i> : <i>a</i>  и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника.

Пусть <i>M</i> – внутренняя точка прямоугольника <i>ABCD</i>, а <i>S</i> – его площадь. Докажите, что <i>S ≤ AM·CM + BM·DM</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка