Олимпиадные задачи из источника «1970 год» для 6-8 класса - сложность 4 с решениями
а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Доказать, что за 8 проверок всегда можно выделить оба радиоактивных шара.б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров,
а за 7 проверок их всегда можно обнаружить.
Биссектриса<i>AD</i>, медиана<i>BM</i>и высота<i>CH</i>остроугольного треугольника<i>ABC</i>пересекаются в одной точке. Докажите, что величина угла<i>BAC</i><nobr>больше 45°.</nobr>
а) Из любых двухсот целых чисел можно выбрать сто чисел, сумма которых делится на 100. Докажите это.
б) Из любых 2<i>n</i> – 1 целых чисел можно выбрать <i>n</i>, сумма которых делится на <i>n</i>. Докажите это.
Найдите суммы
а) 1·<i>n</i> + 2(<i>n</i> – 1) + 3(<i>n</i> – 2) + ... + <i>n</i>·1.
б) <i>S<sub>n,k</sub></i> = (1·2·...·<i>k</i>)·(<i>n</i>(<i>n</i> – 1)...(<i>n</i> – <i>k</i> + 1)) + (2·3·...·(<i>k</i> + 1))·((<i>n</i> – 1)(<i>n</i> – 2)...(<i>n</i> – <i>k</i>)) + ... + ((<i>n</i> – <i>k</i> + 1)(<i>n</i> – <i>k</i> + 2)...·<i>n</i>)·(<i>k</i>(<i>k</i> – 1)·...·1).
На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это.
Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых<nobr>больше 1.</nobr>Докажите это.Расстояние между двумя кругами — это расстояние между их ближайшими точками.
Если сумма дробей <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_2.gif"> равна 0, то сумма дробей <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_3.gif"> тоже равна 0. Докажите это.
Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
<img src="/storage/problem-media/73554/problem_73554_img_2.gif" width="172" height="69" vspace="10" hspace="20" align="right">В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени<nobr><i>t</i> = 0</nobr>возбудить три соседние клетки...
Квадратная таблица размером <i>n×n</i> заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать <i>n</i> положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке.
Если разность между наибольшим и наименьшим из<nobr><i>n</i> данных</nobr>вещественных чисел<nobr>равна <i>d</i>,</nobr>а сумма модулей всех<nobr><i>n</i>(<i>n</i> – 1)/2</nobr>попарных разностей этих чисел<nobr>равна <i>s</i>,</nobr>то(<i>n</i> – 1)<i>d</i> <font face="Symbol">£</font> <i>s</i> <font face="Symbol">£</font> <i>n</i><sup>2</sup><i>d</i>/4.Докажите это.
Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
В треугольнике <i>ABC</i> через середину <i>M</i> стороны <i>BC</i> и центр <i>O</i> вписанной в этот треугольник окружности проведена прямая <i>MO</i>, которая пересекает высоту <i>AH</i> в точке <i>E</i>. Докажите, что отрезок <i>AE</i> равен радиусу вписанной окружности.