Олимпиадные задачи из источника «глава 19. Гомотетия и поворотная гомотетия» для 11 класса - сложность 1-5 с решениями
глава 19. Гомотетия и поворотная гомотетия
НазадВыпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки <i>A</i> и <i>B</i>.
Докажите, что существует такая точка <i>P</i>, что в любой момент времени <i>AP</i> : <i>BP = k</i>, где <i>k</i> – отношение скоростей.
Дана полуокружность с диаметром<i>AB</i>. Для каждой точки <i>X</i>этой полуокружности на луче<i>XA</i>откладывается точка <i>Y</i>так, что<i>XY</i>=<i>kXB</i>. Найдите ГМТ <i>Y</i>.
Трапеции<i>ABCD</i>и <i>APQD</i>имеют общее основание<i>AD</i>, причем длины всех их оснований попарно различны. Докажите, что на одной прямой лежат точки пересечения следующих пар прямых: а)<i>AB</i>и <i>CD</i>,<i>AP</i>и <i>DQ</i>,<i>BP</i>и <i>CQ</i>; б)<i>AB</i>и <i>CD</i>,<i>AQ</i>и <i>DP</i>,<i>BQ</i>и <i>CP</i>.
Докажите, что любой выпуклый многоугольник $\Phi$содержит два непересекающихся многоугольника $\Phi_{1}^{}$и $\Phi_{2}^{}$, подобных $\Phi$с коэффициентом 1/2.
Пусть <i>M</i> — центр масс<i>n</i>-угольника<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>;<i>M</i><sub>1</sub>,...,<i>M</i><sub>n</sub> — центры масс (<i>n</i>- 1)-угольников, полученных из этого<i>n</i>-угольника выбрасыванием вершин<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>соответственно. Докажите, что многоугольники<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>и <i>M</i><sub>1</sub>...<i>M</i><sub>n</sub>гомотетичны.