Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 10-11 класса - сложность 3-5 с решениями

Найти все пары целых чисел  (<i>x, y</i>),  удовлетворяющие уравнению   3·2<sup><i>x</i></sup> + 1 = <i>y</i>².

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),<nobr>а) проигрывает;</nobr><nobr>б) выигрывает.</nobr>Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

Докажите, что при любом простом  <i>p</i>   <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif">   делится на <i>p</i>.

<i>n</i> – натуральное число. Докажите, что  <i>n<sup>n</sup></i> > (<i>n</i> + 1)<sup><i>n</i>–1</sup>.

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   <i>a, b, c , d e</i> ≥ 0 имеет место неравенство <div align="CENTER" class="mathdisplay"><img width="206" height="53" align="MIDDLE" border="0" src="/storage/problem-media/30881/problem_30881_img_2.gif"> </div>

Докажите, что  4<sup>79</sup> < 2<sup>100</sup> + 3<sup>100</sup> < 4<sup>80</sup>.

Докажите, что из набора 0, 1, 2, ...,  ½ (3<sup><i>k</i></sup> – 1)  можно выбрать 2<sup><i>k</i></sup> чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.

Докажите, что из набора 0, 1, 2, ...,  3<sup><i>k</i></sup> – 1  можно выбрать 2<sup><i>k</i></sup> чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.

Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть на обе чашки весов?

Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.

Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.

Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.

В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более  а) 198 перёлетов;  б) 196 перелётов.

В вершинах правильного 12-угольника расставлены числа 1 и –1 так, что во всех вершинах, кроме одной, стоят единицы. Разрешается изменять знак в любых <i>k</i> подряд идущих вершинах. Можно ли такими операциями добиться того, чтобы единственное число –1 сдвинулось в соседнюю с исходной вершину, если   а)  <i>k</i> = 3;   б)  <i>k</i> = 4;   в)  <i>k</i> = 6.

а) Пусть <i>p</i> – простое число, отличное от 3. Докажите, что число 1...1 (<i>p</i> единиц) не делится на p. б) Пусть  <i>p</i> > 5  – простое число. Докажите, что число 1...1  (<i>p</i> – 1  единица) делится на p.

Пусть <i>p</i> и <i>q</i> – различные простые числа. Докажите, что

  а)  <i>p<sup>q</sup> + q<sup>p</sup> ≡ p + q</i> (mod <i>pq</i>);   б)   <img align="absmiddle" src="/storage/problem-media/30681/problem_30681_img_2.gif"> – чётное число, если  <i>p, q</i> ≠ 2.

Найдите остаток от деления 3<sup>102</sup> на 101.

Решите уравнение  <i>x</i>² – 5<i>y</i>² = 1  в целых числах.

Решить в целых числах уравнение  3<sup><i>m</i></sup> + 7 = 2<sup><i>n</i></sup>.

Последовательность <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... натуральных чисел такова, что  <i>a</i><sub><i>n</i>+2</sub> = <i>a</i><sub><i>n</i>+1</sub><i>a<sub>n</sub></i> + 1 при всех <i>n</i>.

  а)  <i>a</i><sub>1</sub> = <i>a</i><sub>2</sub> = 1.  Докажите, что ни один из членов последовательности не делится на 4.

  б) Докажите, что  <i>a<sub>n</sub></i> – 22  – составное число при любом <i>n</i> > 10.

Игра начинается с числа 1000. За ход разрешается вычесть из имеющегося числа любое, не превосходящее его, натуральное число, являющееся степенью двойки (1 = 2<sup>0</sup>). Выигрывает тот, кто получит ноль.

Имеется две кучки по 11 спичек. За ход можно взять две спички из одной кучки и одну из другой. Проигрывает тот, кто не может сделать ход.

а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход. б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.

Ферзь стоит на поле<i>c</i>1. За ход его можно передвинуть на любое число полей вправо, вверх или по диагонали "вправо-вверх". Выигрывает тот, кто поставит ферзя на поле<i>h</i>8.

Имеется три кучки камней: в первой – 50, во второй– 60, в третьей – 70. Ход состоит в разбиении каждой кучки,состоящей более чем из одного камня, на две меньшие кучки.Выигрывает тот, после чьего хода во всех кучках будет по одному камню.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка