Олимпиадные задачи по теме «Методы» для 5-11 класса - сложность 5 с решениями
Методы
Все категорииНа плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?
В нашем распоряжении имеются 3<sup>2<i>k</i></sup>неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3<i>k + </i>1 взвешиваний?
На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары. Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?
Пусть<i> h </i> — наименьшая высота тетраэдра,<i> d </i> — наименьшее расстояние между его противоположными ребрами. При каких<i> t </i>возможно неравенство<i> d>th </i>?
Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_2.gif"> </i>, б) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_3.gif"> </i>, в) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_4.gif"> </i>?
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине<i> A </i>квадрата<i> ABCD </i>находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке<i> A </i>). Вначале лиса сидит в точке<i> C </i>, а зайцы – в точках<i> B </i>и<i> D </i>. Лиса бегает повсюду со скоростью не больше<i> v </i>, а зайцы – по лучам<i> AB </i>и<i> AD </i>со скоростью не больше 1. При каких значениях<i> v </i>лиса сможет поймать обоих зайцев?
У выпуклого многогранника2<i>n </i>граней (<i> n<img src="/storage/problem-media/110213/problem_110213_img_2.gif"> </i>3), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?
В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.
Даны натуральные числа<i> p<k<n </i>. На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (<i>k+</i>1)×<i>n </i>(<i> n </i>клеток по горизонтали,<i> k+</i>1– по вертикали) отмечено ровно<i> p </i>клеток. Докажите, что существует прямоугольник<i> k</i>×(<i>n+</i>1) (где<i> n+</i>1клетка по горизонтали,<i> k </i>– по вертикали), в котором отмечено не менее<i> p+</i>1клетки.
При каких натуральных<i> n </i>для любых чисел<i> α </i>,<i> β </i>,<i> γ </i>, являющихся величинами углов остроугольного треугольника, справедливо неравенство <center><i>
sin nα + sin nβ + sin nγ<</i>0<i>? </i></center>
Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.
В квадрате<i> n</i>×<i>n </i>клеток бесконечной шахматной доски расположены<i> n<sup>2</sup> </i>фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через[<i><img src="/storage/problem-media/109694/problem_109694_img_2.gif"></i>]ходов.
Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника <i>m×n</i> числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.
На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:<ol> <li> Снять по одному камню с клеток <i> n-</i>1 и <i> n </i> и положить один камень в клетку <i> n+</i>1; </li> <li> Снять два камня с клетки <i> n </i> и положить по одному камню в клетки <i> n+</i>1, <i> n-</i>2.</li></ol>Докажите, что при любой последовательности действий мы достигнем ситуации, когда указанные действия больше выполнять нельзя, и эта конечная ситуация не зависит от последовательности действий (а зависит только от начальной раскладки камней по клеткам).
Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.
В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать параллельно линиям сетки на целое число клеток. Известно, что для любого положения первой фигуры сумма чисел, записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй фигуры, при котором сумма чисел в накрываемых ею клетках положительна.
Внутри выпуклого стоугольника выбрано<i> k </i>точек,2<i><img src="/storage/problem-media/109552/problem_109552_img_2.gif"> k<img src="/storage/problem-media/109552/problem_109552_img_2.gif"> </i>50. Докажите, что можно отметить2<i>k </i>вершин стоугольника так, чтобы все выбранные точки оказались внутри2<i>k </i>-угольника с отмеченными вершинами.
Докажите, что существует такое натуральное число<i> n </i>, что если правильный треугольник со стороной<i> n </i>разбить прямыми, параллельными его сторонам, на<i> n<sup>2</sup> </i>правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать1993<i>n </i>точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника:
а) через 3 шага с точностью до 0,3;
б) через 2007 шагов с точностью до 0,003?
На плоскости дано<i> k </i>точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все<i> k </i>точек лежат на одной прямой.
Существует ли такой многогранник и точка вне него, что из этой точки не видно ни одной из его вершин?
Из выпуклого многогранника с 9 вершинами, одна из которых<i>A</i>, параллельными переносами, переводящими<i>A</i>в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам).