Олимпиадные задачи по теме «Методы» для 4-9 класса - сложность 1 с решениями
Методы
Все категорииМожно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?
Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.) <div align="center"><img src="/storage/problem-media/116964/problem_116964_img_2.gif"></div>
На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?
Пазл Пете понравился, он решил его склеить и повесить на стену. За одну минуту он склеивал вместе два куска (начальных или ранее склеенных). В результате весь пазл соединился в одну цельную картину за 2 часа. За какое время собралась бы картина, если бы Петя склеивал вместе за минуту не по два, а по три куска?
Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля? ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)
Верно ли, что если <i>b > a + c</i> > 0, то квадратное уравнение <i>ax</i>² + <i>bx + c</i> = 0 имеет два корня?
В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.
Можно ли квадрат разрезать на 9 квадратов и раскрасить их так, чтобы получились 1 белый, 3 серых и 5 чёрных квадратов, причём одноцветные квадраты были бы равны, а разноцветные квадраты – не равны?
В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>
Дана прямоугольная полоска размером 12×1. Oклейте этой полоской в два слоя куб с ребром 1 (полоску можно сгибать, но нельзя надрезать).
Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)
На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>
Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?
На доске записаны числа 1, 2<sup>1</sup>, 2², 2³, 2<sup>4</sup>, 2<sup>5</sup>. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?
В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?
Какое наибольшее значение может принимать выражение <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif"> где <i>a, b, c</i> – попарно различные ненулевые цифры?
КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР — трёхзначные числа, разные буквы обозначают различные цифры.)
Однажды Миша, Витя и Коля заметили, что принесли в детский сад одинаковые игрушечные машинки. У Миши есть машинка с прицепом, есть маленькая машинка и есть зеленая машинка без прицепа. У Вити есть машинка без прицепа и маленькая зеленая с прицепом, а у Коли — большая машинка и маленькая синяя с прицепом. Машинку какого вида (по цвету, размеру и наличию прицепа) принесли мальчики в детский сад? Ответ объясните.
В классе25учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?
У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова?
Число умножили на сумму его цифр и получили 2008. Найдите это число.
Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?
В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?
Про числа<i> a </i>и<i> b </i>известно, что<i> a=b+</i>1. Может ли оказаться так, что<i> a<sup>4</sup>=b<sup>4</sup> </i>?
Назовем число зеркальным, если справа налево оно читается так же, как слева направо. Например, число78887– зеркальное. Найдите все зеркальные пятизначные числа, в записи которых используются только цифры1и0.