Олимпиадные задачи по теме «Методы» для 3-10 класса - сложность 1 с решениями

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?

(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.) <div align="center"><img src="/storage/problem-media/116964/problem_116964_img_2.gif"></div>

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Пазл Пете понравился, он решил его склеить и повесить на стену. За одну минуту он склеивал вместе два куска (начальных или ранее склеенных). В результате весь пазл соединился в одну цельную картину за 2 часа. За какое время собралась бы картина, если бы Петя склеивал вместе за минуту не по два, а по три куска?

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

Верно ли, что если  <i>b > a + c</i> > 0,  то квадратное уравнение  <i>ax</i>² + <i>bx + c</i> = 0   имеет два корня?

В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.

Можно ли квадрат разрезать на 9 квадратов и раскрасить их так, чтобы получились 1 белый, 3 серых и 5 чёрных квадратов, причём одноцветные квадраты были бы равны, а разноцветные квадраты – не равны?

Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>

Дана прямоугольная полоска размером 12×1. Oклейте этой полоской в два слоя куб с ребром 1 (полоску можно сгибать, но нельзя надрезать).

Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>

Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?

На доске записаны числа 1, 2<sup>1</sup>, 2², 2³, 2<sup>4</sup>, 2<sup>5</sup>. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.

Может ли на доске в результате нескольких таких операций остаться только число 15?

В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?

Какое наибольшее значение может принимать выражение   <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif">   где <i>a, b, c</i> – попарно различные ненулевые цифры?

КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР — трёхзначные числа, разные буквы обозначают различные цифры.)

Однажды Миша, Витя и Коля заметили, что принесли в детский сад одинаковые игрушечные машинки. У Миши есть машинка с прицепом, есть маленькая машинка и есть зеленая машинка без прицепа. У Вити есть машинка без прицепа и маленькая зеленая с прицепом, а у Коли — большая машинка и маленькая синяя с прицепом. Машинку какого вида (по цвету, размеру и наличию прицепа) принесли мальчики в детский сад? Ответ объясните.

В классе25учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?

У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова?

Число умножили на сумму его цифр и получили 2008. Найдите это число.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка