Олимпиадные задачи по теме «Принцип крайнего» для 7 класса - сложность 3 с решениями

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?

Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа  <i>x + y</i>² + <i>z</i>²,  <i>x</i>² + <i>y</i> + <i>z</i>²  и  <i>x</i>² + <i>y</i>² + <i>z</i>  целые. Докажите, что число 2<i>x</i> целое.

В каждой клетке таблицы 10×10 записано число. В каждой строке подчеркнули наибольшее число (или одно из наибольших, если их несколько), а в каждом столбце – наименьшее (или одно из наименьших). Оказалось, что все подчёркнутые числа подчёркнуты ровно два раза. Докажите, что все числа, записанные в таблице, между собой равны.

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?

Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif">  делится на <i>p</i><sub>2</sub>,  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif">  делится на <i>p</i><sub>3</sub>, ...,  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif">  делится на <i>p</i><sub>1</sub>?

Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?

Может ли в наборе из шести чисел  (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>},  где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел<i> a </i>и<i> b </i>(<i> a>b </i>) хотя бы одно из чисел<i> a+b </i>или<i> a-b </i>тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.

Какое наибольшее число людей могло остаться в конце?

На плоскости отметили <i>n</i>  (<i>n</i> > 2)  прямых, проходящих через одну точку <i>O</i> таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.

На плоскости расположено[<i><img src="/storage/problem-media/110102/problem_110102_img_2.gif"> n</i>]прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с<i> n </i>прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

На прямой имеется2<i>n+</i>1отрезок. Любой отрезок пересекается по крайней мере с<i> n </i>другими. Докажите, что существует отрезок, пересекающийся со всеми остальными.

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.

(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.

На плоскости задано<i> n </i>точек. Известно, что среди любых трёх из них имеются две, расстояние между которыми не больше 1. Доказать, что на плоскость можно наложить два круга радиуса 1, которые закроют все эти точки.

У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?

В вершинах куба<i>ABCDEFGH</i>расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. (Пары диаметрально противоположных вершин куба: <i>A</i> и <i>G</i>, <i>B</i> и <i>H</i>, <i>C</i> и <i>E</i>, <i>D</i> и <i>F</i>.)

<img src="/storage/problem-media/103857/problem_103857_img_2.gif">

Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 500 граммов. Такой набор называется <i>правильным</i>, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 500, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири – на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).

  а) Приведите пример правильного набора, в котором не все гири по одному грамму.

  б) Сколько существует различных правильных наборов?

(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)

Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 200 граммов. Такой набор называется <i>правильным</i>, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 200, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири - на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).

  а) Приведите пример правильного набора, в котором не все гири по одному грамму.

  б) Сколько существует различных правильных наборов? (Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)

а) Докажите, что если в 3<i>n</i> клетках таблицы 2<i>n</i>×2<i>n</i> расставлены 3<i>n</i> звёздочек, то можно вычеркнуть <i>n</i> столбцов и <i>n</i> строк так, что все звёздочки будут вычеркнуты.

б) Докажите, что в таблице 2<i>n</i>×2<i>n</i> можно расставить  3<i>n</i> + 1  звёздочку так, что при вычеркивании любых <i>n</i> строк и любых <i>n</i> столбцов остаётся невычеркнутой хотя бы одна звёздочка.

2000 яблок лежат в нескольких корзинах. Разрешается убирать корзины и вынимать яблоки из корзин.

Доказать, что можно добиться того, чтобы во всех оставшихся корзинах было поровну яблок, а общее число яблок было не меньше 100.

Коля и Витя играют в следующую игру. На столе лежит куча из 31 камня. Мальчики делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля сделать так, чтобы выиграть при любой игре Вити?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка