Олимпиадные задачи по теме «Доказательство от противного» для 10 класса - сложность 3 с решениями

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, ...  так, чтобы при любом натуральном <i>k</i> сумма всех чисел, входящих в подмножество <i>A<sub>k</sub></i>, равнялась  <i>k</i> + 2013?

В клетках доски 8×8 расставлены числа 1 и –1 (в каждой клетке – по одному числу). Рассмотрим всевозможные расположения фигурки <img align="middle" src="/storage/problem-media/116938/problem_116938_img_2.gif"> на доске (фигурку можно поворачивать, но её клетки не должны выходить за пределы доски). Назовём такое расположение <i> неудачным</i>, если сумма чисел, стоящих в четырёх клетках фигурки, не равна 0. Найдите наименьшее возможное число неудачных расположений.

При каких  <i>n</i> > 3  правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?

Даны многочлен <i>P</i>(<i>x</i>) и такие числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>,  что  <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0.  Оказалось, что  <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3&lt...

Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого  <i>i</i> = 1, 2, ..., <i>n</i>  в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub&gt...

Пусть  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub>  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub>  равняться 2012?

Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа  <i>a</i>² – 2011<i>b</i>²  и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?

Положительные действительные числа    <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>  и <i>k</i> таковы, что  <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i> = 3<i>k</i>,   <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_3.gif"> .

Докажите, что какие-то два из чисел  <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>  отличаются больше чем на 1.

Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.

Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.

По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа  <i>a</i>² + 1.

Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что  <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).

На столе лежит куча из более чем <i>n</i>² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее <i>n</i>, либо любое кратное <i>n</i> число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.

В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число  <i>am</i>² + <i>bn</i>²  является точным квадратом. Докажите, что  <i>ab</i> = 0.

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.

Какое наименьшее количество нулей может быть среди этих чисел?

Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе  <i>y = x</i>²,  если

  а)  <i>N</i> = 2011;

  б)  <i>N</i> = 2012?

В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.

  а) Докажите, что если  <i>k</i> = 2,  то  <i>a = b</i>.

  б) В случае  <i>k</i> = 3  приведите пример такой таблицы, для которой  <i>a ≠ b</i>.

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Числа 1, 2, ..., 100 стоят по кругу в некотором порядке.

Может ли случиться, что у любых двух соседних чисел модуль разности не меньше 30, но не больше 50?

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.

Какое наименьшее число различных прямых могло получиться?

В течение92дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.

Числа <i>a, b</i> и <i>c</i> таковы, что  (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>,  (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³.  Докажите, что  <i>abc</i> = 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка