Олимпиадные задачи по теме «Комбинаторная геометрия» для 2-9 класса - сложность 3 с решениями

Мачеха приказала Золушке сшить квадратное одеяло из пяти прямоугольных кусков так, чтобы длины сторон всех кусков были попарно различны и составляли целое число дюймов. Сможет ли Золушка выполнить задание без помощи феи-крестной?

Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался <i>крепким</i>: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью. <div align="center"><img src="/storage/problem-media/116975/problem_116975_img_2.gif"></div>Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался<i>крепким</i>и в каждой части было не более 16 клеток.

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём <i> расстоянием</i> между двумя точками длину меньшей дуги между ними. При каком наибольшем <i>n</i> можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на <i>n</i>, увеличилось?

При каких  <i>n</i> > 3  правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

Квадрат разрезан на несколько (больше одного) выпуклых многоугольников с попарно различным числом сторон.

Докажите, что среди них есть треугольник.

Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через <i>N</i> дверей". Какое наименьшее значение <i>N</i> должен назвать шах, чтобы приказ можно было выполнить?

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

Каждый узел бесконечной сетки покрашен в один из четырёх цветов так, что вершины каждого квадрата со стороной 1 окрашены в разные цвета. Верно ли, что узлы одной из прямых сетки окрашены только в два цвета? (Сетка образована горизонтальными и вертикальными прямыми. Расстояние между соседними параллельными прямыми равно 1.)

На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.

Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?

Прямую палку длиной 2 метра распилили на <i>N</i> палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем <i>N</i> можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

На плоскости дана незамкнутая несамопересекающаяся ломаная, в которой 31 звено (соседние звенья не лежат на одной прямой). Через каждое звено провели прямую, содержащую это звено. Получили 31 прямую, некоторые, возможно, совпали. Какое наименьшее число различных прямых могло получиться?

На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.

На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.

Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.

Может ли ломаная пройти через все вершины клеток?

На окружности отметили <i>n</i> точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.

Найдите все значения <i>n</i>, при которых это возможно.

На плоскости задано <i>n</i> точек, являющихся вершинами выпуклого <i>n</i>-угольника,  <i>n</i> > 3.  Известно, что существует ровно <i>k</i> равносторонних треугольников со стороной 1, вершины которых – заданные точки.

  а) Докажите, что  <i>k</i> < <sup>2<i>n</i></sup>/<sub>3</sub>.

  б) Приведите пример конфигурации, для которой  <i>k</i> > 0,666<i>n</i>.

Многоугольник можно разрезать на две равные части тремя различными способами. Верно ли, что у него обязательно есть центр или ось симметрии?

Дано множество точек <i>O, A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>n</sub></i> на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы <i><b>x</b></i> и <i><b>y</b></i>, что для любой точки <i>A<sub>i</sub></i> выполняется равенство   <img align="abs" src="/storage/problem-media/115863/problem_115863_img_2.gif">   где <i>k</i> и <i>l</i> – некоторые целые числа.

Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

На сторонах угла взяты точки <i>A, B</i>. Через середину <i>M</i> отрезка <i>AB</i> проведены две прямые, одна из которых пересекает стороны угла в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, другая – в точках <i>A</i><sub>2</sub> , <i>B</i><sub>2</sub>. Прямые <i>A</i><sub>1</sub><i>B</i><sub>2</sub> и <i>A</i><sub>2</sub><i>B</i><sub>1</sub> пересекают <i>AB</i> в точках <i>P</i> и <i>Q</i>. Докажите, что <i>M</i> – середина <i>PQ</i>.

Невыпуклый <i>n</i>-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли <i>n</i> равняться

  а) 5?

  б) 4?

Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего <i>n</i>-угольника с его вершинами, делят <i>n</i>-угольник на <i>n</i> равных треугольников.

При каком наименьшем <i>n</i> это возможно?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка