Олимпиадные задачи по теме «Теория чисел. Делимость» для 11 класса - сложность 4 с решениями

Для натурального <i>n</i> обозначим  <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!.  Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.

Обозначим через  <i>S</i>(<i>n</i>, <i>k</i>)  количество не делящихся на <i>k</i> коэффициентов разложения многочлена  (<i>x</i> + 1)<i><sup>n</sup></i>  по степеням <i>x</i>.

  а) Найдите  <i>S</i>(2012, 3).

  б) Докажите, что  <i>S</i>(2012<sup>2011</sup>, 2011)  делится на 2012.

Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив

  а) 17 номеров;

  б) менее 16 номеров?

У входа в пещеру стоит барабан, на нём по кругу через равные промежутки расположены<i>N</i>одинаковых с виду бочонков. Внутри каждого бочонка лежит селёдка – либо головой вверх, либо головой вниз, но где как – не видно (бочонки закрыты). За один ход Али-Баба выбирает любой набор бочонков (от 1 до<i>N</i>штук) и переворачивает их все. После этого барабан приходит во вращение, а когда останавливается, Али-Баба не может определить, какие бочонки перевёрнуты. Пещера откроется, если во время вращения барабана все<i>N</i>селёдок будут расположены головами в одну сторону. При каких<i>N</i>Али-Баба сможет открыть пещеру?

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.

Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде  <i>x = a<sup>p</sup> + b<sup>p</sup></i>  (с натуральными <i>a, b</i>) при всех   <i>p</i> ∈ <i>P </i>  и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.

У выпуклого многогранника одна вершина <i>A</i> имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета <i>хорошей</i>, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из <i> A </i>, покрашены в один цвет.

Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из <i>N</i> цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем <i>N</i> фокусник может договориться с помощником так, чтобы фокус гарантированно удался?

Тест состоит из 30 вопросов, на каждый есть два варианта ответа (один верный, другой нет). За одну попытку Витя отвечает на все вопросы, после чего ему сообщают, на сколько вопросов он ответил верно. Сможет ли Витя действовать так, чтобы гарантированно узнать все верные ответы не позже, чем

  а) после 29-й попытки (и ответить верно на все вопросы при 30-й попытке);

  б) после 24-й попытки (и ответить верно на все вопросы при 25-й попытке)? (Изначально Витя не знает ни одного ответа, тест всегда один и тот же.)

В бесконечной последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... число <i>a</i><sub>1</sub> равно 1, а каждое следующее число <i>a<sub>n</sub></i> строится из предыдущего <i>a</i><sub><i>n</i>–1</sub> по правилу: если у числа <i>n</i> наибольший нечётный делитель имеет остаток 1 от деления на 4, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> + 1,  если же остаток равен 3, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> – 1.  Докажите, что в этой последовательности

  а) число 1 встреч...

Натуральные числа покрашены в <i>N</i> цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.

  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.

  б) При каких <i>N</i> такая раскраска возможна?

Пусть <i>p</i> – простое число. Докажите, что при некотором простом <i>q</i> все числа вида  <i>n<sup>p</sup> – p</i>  не делятся на <i>q</i>.

Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

Натуральные числа <i>x, y, z</i>  (<i>x</i> > 2,  <i>y</i> > 1)  таковы, что  <i>x<sup>y</sup></i> + 1 = <i>z</i>².  Обозначим через <i>p</i> количество различных простых делителей числа <i>x</i>, через <i>q</i> – количество различных простых делителей числа <i>y</i>. Докажите, что  <i>p ≥ q</i> + 2.

Существует ли такое натуральное число  <i>n</i> > 10<sup>1000</sup>,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

Последовательность {<i>a<sub>n</sub></i>} строится следующим образом:  <i>a</i><sub>1</sub> = <i>p</i>  – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.

Даны многочлены  <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) с целыми неотрицательными коэффициентами, <i>m</i> – наибольший коэффициент многочлена  <i>f</i>. Известно, что для некоторых натуральных чисел  <i>a < b</i>  имеют место равенства  <i>f</i>(<i>a</i>) = <i>g</i>(<i>a</i>)  и  <i>f</i>(<i>b</i>) = <i>g</i>(<i>b</i>).  Докажите, что если  <i>b > m</i>,  то многочлены  <i>f</i> и <i>g</i> совпадают.

Докажите, что существует бесконечно много натуральных <i>n</i>, для которых числитель несократимой дроби, равной  1 + ½ + ... + <sup>1</sup>/<sub><i>n</i></sub>,  не является степенью простого числа с натуральным показателем.

Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

В прямоугольную коробку с основанием <i>m</i>×<i>n</i>, где <i>m</i> и <i>n</i> – нечётные числа, уложены домино размера 2×1 так, что остался не покрыт только квадрат 1×1 (дырка) в углу коробки. Если доминошка прилегает к дырке короткой стороной, её разрешается сдвинуть вдоль себя на одну клетку, закрыв дырку (при этом открывается новая дырка). Докажите, что с помощью таких передвижений можно перегнать дырку в любой другой угол.

Куб <i>n</i>×<i>n</i>×<i>n</i> сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём <i>отмёченными</i> грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.

В строку в неизвестном порядке записаны все целые числа от 1 до 100. За один вопрос про любые 50 чисел можно узнать, в каком порядке относительно друг друга записаны эти 50 чисел. За какое наименьшее число вопросов наверняка можно узнать, в каком порядке записаны все 100 чисел?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка