Олимпиадные задачи по теме «Системы счисления» для 4-9 класса - сложность 4-5 с решениями
Системы счисления
НазадПетя и Вася играют в следующую игру. Петя загадывает натуральное число <i>x</i> с суммой цифр 2012. За один ход Вася выбирает любое натуральное число <i>a</i> и узнаёт у Пети сумму цифр числа |<i>x – a</i>|. Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить <i>x</i>?
Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.
Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из <i>N</i> цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем <i>N</i> фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
Расстоянием между числами <span style="text-decoration: overline;"><i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub><i>a</i><sub>4</sub><i>a</i><sub>5</sub></span> и <span style="text-decoration: overline;"><i>b</i><sub>1</sub><i>b</i><sub>2</sub><i>b</i><sub>3</sub><i>b</i><sub>4</sub><i>b</i><sub>5</sub></span> назовём максимальное <i>i</i>, для которого <i>a<sub>i</sub></i> ≠ <i>b<sub>i</sub></i>. Все пятизначные числа выписаны друг...
Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Сколькими способами числа 2<sup>0</sup>, 2<sup>1</sup>, 2², ..., 2<sup>2005</sup> можно разбить на два непустых множества <i>A</i> и <i>B</i> так, чтобы уравнение <i>x</i>² – <i>S</i>(<i>A</i>)<i>x + S</i>(<i>B</i>) = 0, где <i>S</i>(<i>M</i>) – сумма чисел множества <i>M</i>, имело целый корень?
Существует ли такое натуральное число <i>n</i> > 10<sup>1000</sup>, не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?
Обозначим<i> S</i>(<i>x</i>)сумму цифр числа<i> x </i>. Найдутся ли три таких натуральных числа<i> a </i>,<i> b </i>и<i> c </i>, что<i> S</i>(<i>a+b</i>)<i><</i>5,<i> S</i>(<i>a+c</i>)<i><</i>5и<i> S</i>(<i>b+c</i>)<i><</i>5, но<i> S</i>(<i>a+b+c</i>)<i>></i>50?
Дан ряд чисел<i> 1,1,2,3,5,8,13,21,34,..., </i>каждое из которых, начиная с третьего, равно сумме двух предыдущих. Доказать, что каждое натуральное число<i> n>2 </i>равно сумме нескольких различных чисел указанного ряда.
Докажите, что для любого <i>k</i> > 1 найдётся такая степень двойки, что среди <i>k</i> последних её цифр не менее половины составляют девятки.
(Например, 2<sup>12</sup> = ...96, 2<sup>53</sup> = ...992.)
В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в каждый, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более пяти дорог.
а) Докажите, что это возможно.
б) Докажите, что если в формулировке заменить число 5 на число 4, то желание короля станет неосуществимым.
<i>N</i> друзей одновременно узнали <i>N</i> новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.
Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.
Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:
а) <i>N</i> = 64,
б) <i>N</i> = 55,
в) <i>N</i> = 100.
Рассматриваются всевозможные<i>n</i>-значные числа, составленные из цифр 1, 2 и 3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так, что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются разные цифры. Доказать, что найдется<i>n</i>-значное число, в записи которого участвует лишь одна единица и к которому приписывается единица.
Задано такое натуральное число <i>A</i>, что для любого натурального <i>N</i>, делящегося на <i>A</i>, число <img width="22" height="18" align="BOTTOM" border="0" src="/storage/problem-media/78626/problem_78626_img_2.gif"> тоже делится на <i>A</i>. (<img width="22" height="18" align="BOTTOM" border="0" src="/storage/problem-media/78626/problem_78626_img_2.gif"> – число, состоящее из тех же цифр, что и <i>N</i>, но записанных в обратном порядке; например, <img width="36" height="19" align="BOTTOM" border="0" src="/storage/problem-media/78626/problem_78626_img_3.gif">...
Дан ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., в котором каждое число, начиная с третьего, равно сумме двух предыдущих. Найдётся ли среди первых 10<sup>8</sup>+ 1 членов этого ряда число, оканчивающееся четырьмя нулями?
Вычислите квадратный корень из числа 0,111...111<nobr>(100 единиц)</nobr>с точностью до<nobr>а) 100;</nobr><nobr>б) 101;</nobr><nobr>в)* 200</nobr>знаков после запятой.
По заданному ненулевому<i>x</i>значение<i>x</i><sup>8</sup>можно найти за три арифметических действия:<nobr><i>x</i><sup>2</sup> = <i>x</i> · <i>x</i>,</nobr><nobr><i>x</i><sup>4</sup> = <i>x</i><sup>2</sup> · <i>x</i><sup>2</sup>,</nobr><nobr><i>x</i><sup>8</sup> = <i>x</i><sup>4</sup> · <i>x</i><sup>4</sup>,</nobr>а<nobr><i>x</i><sup>15</sup> —</nobr>за пять действий: первые<nobr>три —</nobr>те же самые, затем<nobr><i>x</i><sup>8</sup> · <i>x<...
С натуральным числом (записываемым в десятичной системе) разрешено проделывать следующие операции:А) приписать на конце <nobr>цифру 4;</nobr> Б) приписать на конце <nobr>цифру 0;</nobr> В) разделить на 2 (если число чётно). Например, если с числом 4 проделаем последовательно операции В, В, А <nobr>и Б,</nobr> то получим <nobr>число 140.</nobr> а) Из числа 4 получите <nobr>число 1972.</nobr> б)* Докажите, что из числа 4 можно получить любое натуральное число.
В три сосуда налито по целому числу литров воды. В любой сосуд разрешено перелить столько воды, сколько в нём уже содержится, из любого другого сосуда. Докажите, что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды достаточно велики: каждый может вместить всю воду.)
Все натуральные числа, в десятичной записи которых не больше<nobr><i>n</i> цифр,</nobr>разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во<nobr>второе —</nobr>c чётной суммой цифр. Докажите, что для любого натурального числа<nobr><i>k</i> <font face="Symbol">£</font> <i>n</i></nobr>сумма<nobr><i>k</i>-х степеней</nobr>всех чисел первого множества равна сумме<nobr><i>k</i>-х степеней</nobr>всех чисел второго множества.
<img src="/storage/problem-media/73554/problem_73554_img_2.gif" width="172" height="69" vspace="10" hspace="20" align="right">В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени<nobr><i>t</i> = 0</nobr>возбудить три соседние клетки...
Назовём тройку чисел<i>триплетом</i>, если одно из них равно среднему арифметическому двух других. Последовательность $(a_n)$ строится следующим образом: $a_0 = 0$, $a_1 = 1$ и при $n > 1$ число $a_n$ — такое минимальное натуральное число, большее $a_{n-1}$, что среди чисел $a_0$, $a_1$, ..., $a_n$ нет трёх, образующих триплет. Докажите, что $a_{2023} \leqslant 100,000$.
Король решил поощрить группу из $n$ мудрецов. Их поставят в ряд друг за другом (чтобы все смотрели в одном направлении), на каждого наденут чёрную или белую шляпу. Каждый будет видеть шляпы всех впереди стоящих. Мудрецы по очереди (от последнего к первому) назовут цвет (белый или чёрный) и натуральное число по своему выбору. В конце подсчитывается число мудрецов, которые назвали цвет, совпадающий с цветом своей шляпы: ровно столько дней всей группе будут платить надбавку к жалованью. Мудрецам разрешили договориться заранее, как отвечать. При этом мудрецы знают, что ровно $k$ из них безумны (кто именно – им неизвестно). Безумный мудрец называет белый или чёрный цвет и число вне зависимости от договорённостей. Какое максимальное число дней с надбавкой к жалованью могут гарантировать группе м...
Обозначим через <i>S</i>(<i>k</i>) сумму цифр натурального числа <i>k</i>. Натуральное число <i>a</i> назовём <i>n-хорошим</i>, если существует такая последовательность натуральных чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>, что <i>a<sub>n</sub> = a</i> и <i>a</i><sub><i>i</i>+1</sub> = <i>a<sub>i</sub> – S</i>(<i>a<sub>i</sub></i>) при всех <i>i</i> = 0, 1, ..., <i>n</i> – 1. Верно ли, что для любого натурального <i>n</i> существует натуральное число, являющееся <i>n<...