Олимпиадные задачи по теме «Системы счисления» для 11 класса - сложность 1-4 с решениями
Системы счисления
НазадВ десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить 12345 + 6 + 789 = 13140). С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.
Назовём натуральное число <i>хорошим</i>, если все его цифры ненулевые. Хорошее число назовём <i>особым</i>, если в нём хотя бы <i>k</i> разрядов и цифры идут в порядке строгого возрастания (слева направо). Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем <i>k</i> можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?
Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?
Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из <i>N</i> цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем <i>N</i> фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке<i> p </i>стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких<i> p </i>Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?
Каких точных квадратов, не превосходящих 10<sup>20</sup>, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?
Расстоянием между числами <span style="text-decoration: overline;"><i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub><i>a</i><sub>4</sub><i>a</i><sub>5</sub></span> и <span style="text-decoration: overline;"><i>b</i><sub>1</sub><i>b</i><sub>2</sub><i>b</i><sub>3</sub><i>b</i><sub>4</sub><i>b</i><sub>5</sub></span> назовём максимальное <i>i</i>, для которого <i>a<sub>i</sub></i> ≠ <i>b<sub>i</sub></i>. Все пятизначные числа выписаны друг...
Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Обозначим через <i>S</i>(<i>m</i>) сумму цифр натурального числа <i>m</i>. Докажите, что существует бесконечно много таких натуральных <i>n</i>, что <i>S</i>(3<i><sup>n</sup></i>) ≥ <i>S</i>(3<sup><i>n</i>+1</sup>).
Сколькими способами числа 2<sup>0</sup>, 2<sup>1</sup>, 2², ..., 2<sup>2005</sup> можно разбить на два непустых множества <i>A</i> и <i>B</i> так, чтобы уравнение <i>x</i>² – <i>S</i>(<i>A</i>)<i>x + S</i>(<i>B</i>) = 0, где <i>S</i>(<i>M</i>) – сумма чисел множества <i>M</i>, имело целый корень?
Существует ли такое натуральное число <i>n</i> > 10<sup>1000</sup>, не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?
Даны многочлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) с целыми неотрицательными коэффициентами, <i>m</i> – наибольший коэффициент многочлена <i>f</i>. Известно, что для некоторых натуральных чисел <i>a < b</i> имеют место равенства <i>f</i>(<i>a</i>) = <i>g</i>(<i>a</i>) и <i>f</i>(<i>b</i>) = <i>g</i>(<i>b</i>). Докажите, что если <i>b > m</i>, то многочлены <i>f</i> и <i>g</i> совпадают.
Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до<i> n </i>(<i> n></i>1), одинаково читаться слева направо и справа налево?
Назовём натуральные числа <i>похожими</i>, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.
Дана последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, в которой <i>a</i><sub>1</sub> не делится на 5 и для всякого <i>n</i> <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub> + b<sub>n</sub></i>, где <i>b<sub>n</sub></i> – последняя цифра числа <i>a<sub>n</sub></i>. Докажите, что последовательность содержит бесконечно много степеней двойки.
Найдите все натуральные числа <i>n</i>, для которых сумма цифр числа 5<i><sup>n</sup></i> равна 2<i><sup>n</sup></i>.
Найти такое трёхзначное число <i>A</i>², являющееся точным квадратом, что произведение его цифр равно <i>A</i> – 1.
При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа <i>A + B</i>?
Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки (1, 2, 4, 8, 1, 3, 6, 1, ...).
В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
Докажите, что для любого <i>k</i> > 1 найдётся такая степень двойки, что среди <i>k</i> последних её цифр не менее половины составляют девятки.
(Например, 2<sup>12</sup> = ...96, 2<sup>53</sup> = ...992.)