Олимпиадные задачи по теме «Рациональные функции» для 8 класса - сложность 2-5 с решениями

Известно, что числа <i>а, b, c</i> и <i>d</i> – целые и  <img align="absmiddle" src="/storage/problem-media/116922/problem_116922_img_2.gif">.  Может ли выполняться равенство  <i>аbcd</i> = 2012?

Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число  <i>an</i>(<i>n</i> + 2)(<i>n</i> + 4)  будет целым.

Найдите значение выражения   <img align="absmiddle" src="/storage/problem-media/116454/problem_116454_img_2.gif"> ,   если  <i>а</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_3.gif">,   <i>b</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_4.gif">.

Известно, что выражения  4<i>k</i> + 5  и  9<i>k</i> + 4  при некоторых натуральных значениях <i>k</i> одновременно являются точными квадратами. Какие значения может принимать выражение  7<i>k</i> + 4  при тех же значениях <i>k</i>?

Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.

На бумажке записаны 1 и некоторое нецелое число <i>x</i>. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке

число <i>x</i>²?

Известно, что существует число<i> S </i>, такое, что если<i> a+b+c+d=S </i>и<i> <img src="/storage/problem-media/110174/problem_110174_img_2.gif">+<img src="/storage/problem-media/110174/problem_110174_img_3.gif">+<img src="/storage/problem-media/110174/problem_110174_img_4.gif">+<img src="/storage/problem-media/110174/problem_110174_img_5.gif">=S </i>(<i> a </i>,<i> b </i>,<i> c </i>,<i> d </i>отличны от нуля и единицы), то<i> <img src="/storage/problem-media/110174/problem_110174_img_6.gif">+ <img src="/storage/problem-media/110174/problem_110174_img_7.gif">+ <img src="/storage/problem-media/11017...

Произведение положительных чисел <i>x, y</i> и <i>z</i> равно 1.

Докажите, что если  <sup>1</sup>/<sub><i>x</i></sub> + <sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<i><sub>z</sub> ≥ x + y + z</i>,  то для любого натурального <i>k</i> выполнено неравенство  <i>x<sup>–k</sup> + y<sup>–k</sup> + z<sup>–k</sup> ≥ x<sup>k</sup> + y<sup>k</sup> + z<sup>k</sup></i>.

Докажите, что найдутся четыре таких целых числа <i>a, b, c, d</i>, по модулю больших 1000000, что  <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<sub><i>c</i></sub> + <sup>1</sup>/<sub><i>d</i></sub> = <sup>1</sup>/<sub><i>abcd</i></sub>.

Сумма чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, каждое из которых больше единицы, равна <i>S</i>, причём   <img align="middle" src="/storage/problem-media/109832/problem_109832_img_2.gif">   для любого  <i>i</i> = 1, 2, 3.

Докажите, что   <img align="middle" src="/storage/problem-media/109832/problem_109832_img_3.gif">

Пусть <i>a, b, c</i> – положительные числа, сумма которых равна 1. Докажите неравенство:   <img align="middle" src="/storage/problem-media/109792/problem_109792_img_2.gif">

Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=

<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.

</i></center>

Доказать, что из равенства   <img align="absmiddle" src="/storage/problem-media/108988/problem_108988_img_2.gif">   вытекает равенство   <img align="absmiddle" src="/storage/problem-media/108988/problem_108988_img_3.gif">   если <i>k</i> нечётно.

Найти такие числа<i> A,B,C,a,b,c </i>, чтобы имело место тождество <center><i>

(4x-2)/(x<sup>3</sup>-x)=A/(x-a)+B/(x-b)+C/(x-c).

</i></center>

Положительные числа <i>a</i>, <i>b</i> и <i>c</i> таковы, что  <i>abc</i> = 1.  Докажите неравенство <div align="CENTER"> <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_2.gif"> + <img width="68" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_3.gif"> + <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_4.gif"> ≤ 1. </div>

<strong>Условие 1:</strong>Среди чисел<i>a</i>,<i>b</i>,<i>c</i>есть два одинаковых. А оставшееся число -- другое. Составьте такое арифметическое выражение из букв<i>a</i>,<i>b</i>,<i>c</i>, знаков +, -, ×, : и скобок, чтобы в результате вычислений получилось это число. (Скобки, знаки и буквы можно использовать любое количество раз.)

<strong>Условие 2:</strong>Среди чисел<i>a</i>,<i>b</i>,<i>c</i>есть два одинаковых. А оставшееся число -- другое. Составьте такое арифметическое выражение из букв<i>a</i>,<i>b</i>,<i>c</i>, знаков +, -, ×, : и скобок, чтобы в результате вычислений получилось это число. (Скобки, знаки и буквы...

Известно, что при любом целом  <i>K</i> ≠ 27  число  <i>a – K</i><sup>1964</sup>  делится без остатка на  27 – <i>K</i>. Найти <i>a</i>.

Известно, что при любом целом  <i>K</i> ≠ 27  число  <i>a – K</i>³  делится на  27 – <i>K</i>. Найти <i>a</i>.

Что больше   <img width="252" height="49" align="MIDDLE" border="0" src="/storage/problem-media/77920/problem_77920_img_2.gif">   или <img width="252" height="49" align="MIDDLE" border="0" src="/storage/problem-media/77920/problem_77920_img_3.gif">?

Если сумма дробей   <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_2.gif">   равна 0, то сумма дробей   <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_3.gif">   тоже равна 0. Докажите это.

Докажите, что для произвольных <i>a, b, с</i> равенство   <img align="absmiddle" src="/storage/problem-media/65082/problem_65082_img_2.gif">   выполнено тогда и только тогда, когда выполнено равенство   <img align="absmiddle" src="/storage/problem-media/65082/problem_65082_img_3.gif">.

Докажите, что если  <i>f</i>(<i>x</i>) – многочлен, степень которого меньше <i>n</i>, то дробь   <img width="205" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61063/problem_61063_img_2.gif">   (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>  – произвольные попарно различные числа) может быть представлена в виде суммы <i>n</i> простейших дробей:   <img align="middle" src="/storage/problem-media/61063/problem_61063_img_3.gif">

где  <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>...

Докажите, что если три числа <i>a, b, c</i> связаны соотношением  <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<sub><i>c</i></sub> = <sup>1</sup>/<sub><i>a+b+c</i></sub>,  то какие-либо два из этих чисел в сумме дают 0.

Вычислите произведение   <img align="absmiddle" src="/storage/problem-media/60313/problem_60313_img_2.gif">

Через центр <i>O</i> правильного треугольника <i>ABC</i> проведена прямая, пересекающая прямые <i>BC, CA</i> и <i>AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>.

Докажите, что одно из чисел <sup>1</sup>/<sub><i>OA</i><sub>1</sub></sub>, <sup>1</sup>/<sub><i>OB</i><sub>1</sub></sub> и <sup>1</sup>/<sub><i>OC</i><sub>1</sub></sub> равно сумме двух других.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка