Олимпиадные задачи по теме «Рациональные функции» для 10 класса - сложность 2-5 с решениями
Рациональные функции
НазадНайдите значение выражения <img align="absmiddle" src="/storage/problem-media/116454/problem_116454_img_2.gif"> , если <i>а</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_3.gif">, <i>b</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_4.gif">.
Известно, что выражения 4<i>k</i> + 5 и 9<i>k</i> + 4 при некоторых натуральных значениях <i>k</i> одновременно являются точными квадратами. Какие значения может принимать выражение 7<i>k</i> + 4 при тех же значениях <i>k</i>?
Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.
На бумажке записаны три положительных числа <i>x, y</i> и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
a) число <i>x</i>²? б) число <i>xy</i>?
Известно, что существует число<i> S </i>, такое, что если<i> a+b+c+d=S </i>и<i> <img src="/storage/problem-media/110174/problem_110174_img_2.gif">+<img src="/storage/problem-media/110174/problem_110174_img_3.gif">+<img src="/storage/problem-media/110174/problem_110174_img_4.gif">+<img src="/storage/problem-media/110174/problem_110174_img_5.gif">=S </i>(<i> a </i>,<i> b </i>,<i> c </i>,<i> d </i>отличны от нуля и единицы), то<i> <img src="/storage/problem-media/110174/problem_110174_img_6.gif">+ <img src="/storage/problem-media/110174/problem_110174_img_7.gif">+ <img src="/storage/problem-media/11017...
Произведение положительных чисел <i>x, y</i> и <i>z</i> равно 1.
Докажите, что если <sup>1</sup>/<sub><i>x</i></sub> + <sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<i><sub>z</sub> ≥ x + y + z</i>, то для любого натурального <i>k</i> выполнено неравенство <i>x<sup>–k</sup> + y<sup>–k</sup> + z<sup>–k</sup> ≥ x<sup>k</sup> + y<sup>k</sup> + z<sup>k</sup></i>.
Докажите, что найдутся четыре таких целых числа <i>a, b, c, d</i>, по модулю больших 1000000, что <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<sub><i>c</i></sub> + <sup>1</sup>/<sub><i>d</i></sub> = <sup>1</sup>/<sub><i>abcd</i></sub>.
Сумма чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, каждое из которых больше единицы, равна <i>S</i>, причём <img align="middle" src="/storage/problem-media/109832/problem_109832_img_2.gif"> для любого <i>i</i> = 1, 2, 3.
Докажите, что <img align="middle" src="/storage/problem-media/109832/problem_109832_img_3.gif">
Пусть <i>a, b, c</i> – положительные числа, сумма которых равна 1. Докажите неравенство: <img align="middle" src="/storage/problem-media/109792/problem_109792_img_2.gif">
Числовое множество<i> M </i>, содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов<i> a,b,c </i>из<i> M </i>число<i> a</i>2<i>+bc </i>рационально. Докажите, что можно выбрать такое натуральное<i> n </i>, что для любого<i> a </i>из<i> M </i>число<i> a<img src="/storage/problem-media/109780/problem_109780_img_2.gif"> </i>рационально.
Доказать, что из равенства <img align="absmiddle" src="/storage/problem-media/108988/problem_108988_img_2.gif"> вытекает равенство <img align="absmiddle" src="/storage/problem-media/108988/problem_108988_img_3.gif"> если <i>k</i> нечётно.
Зная, что<i> x<sup>2</sup>+x+1=0 </i>, определить<i> x<sup>14</sup>+1/x<sup>14</sup> </i>.
Найти такие числа<i> A,B,C,a,b,c </i>, чтобы имело место тождество <center><i>
(4x-2)/(x<sup>3</sup>-x)=A/(x-a)+B/(x-b)+C/(x-c).
</i></center>
Положительные числа <i>a</i>, <i>b</i> и <i>c</i> таковы, что <i>abc</i> = 1. Докажите неравенство <div align="CENTER"> <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_2.gif"> + <img width="68" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_3.gif"> + <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_4.gif"> ≤ 1. </div>
Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/107816/problem_107816_img_2.gif"> + <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/107816/problem_107816_img_3.gif">.
Для положительных чисел <i>x, y, z</i> выполнено равенство <sup><i>x</i>²</sup>/<sub><i>y</i></sub> + <sup><i>y</i>²</sup>/<sub><i>z</i></sub> + <sup><i>z</i>²</sup>/<sub><i>x</i></sub> = <sup><i>x</i>²</sup>/<sub><i>z</i></sub> + <sup><i>y</i>²</sup>/<sub><i>x</i></sub> + <sup><i>z</i>²</sup>/<sub><i>y</i></sub>. Докажите, что хотя бы два из чисел <i>x, y, z</i> равны между собой.
Целые ненулевые числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> таковы, что равенство <div align="center"><img src="/storage/problem-media/98505/problem_98505_img_2.gif"></div>выполнено при всех целых значениях<i>x</i>, входящих в область определения дроби, стоящей в левой части. a) Докажите, что число<i>n</i>чётно. б) При каком наименьшем<i>n</i>такие числа существуют?
Известно, что при любом целом <i>K</i> ≠ 27 число <i>a – K</i><sup>1964</sup> делится без остатка на 27 – <i>K</i>. Найти <i>a</i>.
Известно, что при любом целом <i>K</i> ≠ 27 число <i>a – K</i>³ делится на 27 – <i>K</i>. Найти <i>a</i>.
Докажите, что для любого натурального числа <i>n</i> <img align="absmiddle" src="/storage/problem-media/73719/problem_73719_img_2.gif">
Если сумма дробей <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_2.gif"> равна 0, то сумма дробей <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_3.gif"> тоже равна 0. Докажите это.
Числа <i>x, y</i> и <i>z</i> таковы, что <img align="amsmiddle" src="/storage/problem-media/64428/problem_64428_img_2.gif">. Какие значения может принимать выражение <img align="absmiddle" src="/storage/problem-media/64428/problem_64428_img_3.gif">?
Пусть<i>xy</i>+<i>yz</i>+<i>xz</i>= 1. Докажите равенство:<div align="CENTER"> $\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$. </div>
Решите систему <img width="20" height="127" align="MIDDLE" border="0" src="/storage/problem-media/61064/problem_61064_img_2.gif"><img width="318" height="127" align="MIDDLE" border="0" src="/storage/problem-media/61064/problem_61064_img_3.gif"> (<i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>, <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> – различные числа.)
Докажите, что если <i>f</i>(<i>x</i>) – многочлен, степень которого меньше <i>n</i>, то дробь <img width="205" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61063/problem_61063_img_2.gif"> (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> – произвольные попарно различные числа) может быть представлена в виде суммы <i>n</i> простейших дробей: <img align="middle" src="/storage/problem-media/61063/problem_61063_img_3.gif">
где <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>...