Олимпиадные задачи по математике для 11 класса - сложность 2 с решениями

В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.

Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.

  а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число  <i>a</i> ≠ 1,  и разрезать этот кусок в отношении  1 : <i>a</i>  по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?

  б) Тот же вопрос, но выбирается положительное рациональное  <i>a</i> ≠ 1.

Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?

Про функцию <i>f</i>(<i>x</i>) известно следующее: любая прямая на координатной плоскости имеет с графиком  <i>y = f</i>(<i>x</i>)  столько же общих точек, сколько с параболой  <i>y = x</i>².  Докажите, что  <i>f</i>(<i>x</i>) ≡ <i>x</i>².

Из Южной Америки в Россию 2010 кораблей везут бананы, лимоны и ананасы. Число бананов на каждом корабле равно числу лимонов на остальных кораблях вместе взятых, а число лимонов на каждом корабле равно числу ананасов на остальных кораблях вместе взятых. Докажите, что общее число фруктов делится на 31.

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

В треугольнике <i>ABC</i> взяли точку <i>M</i> так, что что радиусы описанных окружностей треугольников <i>AMC, BMC</i> и <i>BMA</i> не меньше радиуса описанной окружности треугольника <i>ABC</i>. Докажите, что все четыре радиуса равны.

Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?

На полях <i>A, B</i> и <i>C</i> в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? <div align="center"><img src="/storage/problem-media/98541/problem_98541_img_2.gif"></div>

Для какого наибольшего <i>n</i> можно выбрать на поверхности куба <i>n</i> точек так, чтобы не все они лежали в одной грани куба и при этом были вершинами правильного (плоского) <i>n</i>-угольника.

Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.

На двух противоположных гранях игрального кубика нарисовано по одной точке, на двух других противоположных – по две точки, и на двух оставшихся – по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из его шести граней.

Могли ли получиться шесть последовательных чисел?

Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

На прямоугольном листе бумаги отмечены

  а) несколько точек на одной прямой;

  б) три точки.

Разрешается сложить лист бумаги несколько раз по прямой так, чтобы отмеченные точки не попали на линии сгиба, и затем один раз шилом проколоть сложенный лист насквозь. Докажите, что это можно сделать так, чтобы дырки оказались в точности в отмеченных точках и лишних дырок не получилось.

При каких  <i>n</i> > 2  можно расставить целые числа от 1 до <i>n</i> по кругу так, чтобы сумма каждых двух соседних чисел делилась нацело на следующее за ними по часовой стрелке?

В треугольнике точку пересечения биссектрис соединили с вершинами, в результате он разбился на 3 меньших треугольника. Один из меньших треугольников подобен исходному. Найдите его углы.

Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

В море плавает предмет, имеющий форму выпуклого многогранника.

Может ли случиться, что 90% его объёма находится ниже уровня воды и при этом больше половины его поверхности находится выше уровня воды?

При каких <i>n</i> можно раскрасить в три цвета все ребра <i>n</i>-угольной призмы (основания – <i>n</i>-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?  

Мама и сын играют. Сначала сын режет головку сыра 300 г на 4 куска. Затем мама распределяет 280 г масла на 2 тарелки. Наконец, сын раскладывает куски сыра на те же тарелки. Он выиграет, если на каждой тарелке сыра будет не меньше, чем масла (иначе выиграет мама). Кто из них может победить, как бы ни действовал другой?

В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?

В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

В углу шахматной доски 8×8 стоит фишка. Петя и Вася двигают фишку по очереди, начинает Петя. Он делает фишкой один ход как ферзём (пройденной считается только клетка, куда в итоге переместилась фишка), а Вася – два хода как королём (обе клетки считаются пройденными). Нельзя ставить фишку на клетку, где она уже бывала (включая исходную клетку). Кто не сможет сделать ход – проигрывает. Кто из ребят может играть так, чтобы всегда выигрывать, как бы ни играл соперник?

<img align="right" hspace="10" width="169.5" src="/storage/problem-media/66587/problem_66587_img_2.png">В узлах сетки клетчатого прямоугольника $4 \times 5$ расположены $30$ лампочек, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек (размерами лампочек следует пренебречь, считая их точками), такую, что с какой-то одной стороны от нее ни одна лампочка не горит, и зажечь все лампочки по эту сторону от прямой. Каждым ходом нужно зажигать хотя бы одну лампочку. Можно ли зажечь все лампочки ровно за четыре хода?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка