Олимпиадные задачи по математике для 10 класса

Три попарно непересекающиеся окружности ω<sub><i>x</i></sub>, ω<sub><i>y</i></sub>, ω<sub><i>z</i></sub> радиусов <i>r<sub>x</sub>, r<sub>y</sub>, r<sub>z</sub></i> лежат по одну сторону от прямой <i>t</i> и касаются её в точках <i>X, Y, Z</i> соответственно. Известно, что <i>Y</i> – середина отрезка <i>XZ</i>,  <i>r<sub>x</sub> = r<sub>z</sub> = r</i>,  а  <i>r<sub>y</sub> > r</i>.  Пусть <i>p</i> – одна из общих внутренних касательных к окружностям ω<sub><i>x</i></sub> и ω<sub><i>y</i></sub>, а <i&g...

Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

Остроугольный треугольник <i>ABC</i> вписан в окружность ω. Касательные к ω, проведённые через точки <i>B</i> и <i>C</i>, пересекают касательную к ω, проведённую через точку <i>A</i>, в точках <i>K</i> и <i>L</i> соответственно. Прямая, проведённая через <i>K</i> параллельно <i>AB</i>, пересекается с прямой, проведённой через <i>L</i> параллельно <i>AC</i>, в точке <i>P</i>. Докажите, что  <i>BP = CP</i>.

Даны различные натуральные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>14</sub>.  На доску выписаны все 196 чисел вида  <i>a<sub>k</sub></i> + <i>a<sub>l</sub></i>,  где  1 ≤ <i>k</i>, <i>l</i> ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади <i>S</i>. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь <i>S</i>.

Bсе ребра правильной четырехугольной пирамиды равны 1, а все вершины лежат на боковой поверхности (бесконечного) прямого кругового цилиндра радиуса <i>R</i>. Найдите все возможные значения <i>R</i>.

Квадратная доска разделена на <i>n</i>² прямоугольных клеток  <i>n</i> – 1  горизонтальными и  <i>n</i> – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все <i>n</i> клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Диагонали выпуклого четырёхугольника <i>ABCD</i> перпендикулярны и пересекаются в точке <i>O</i>. Известно, что сумма радиусов окружностей, вписанных в треугольники <i>AOB</i> и <i>COD</i>, равна сумме радиусов окружностей, вписанных в треугольники <i>BOC</i> и <i>DOA</i>. Докажите, что

  а) четырёхугольник <i>ABCD</i> – описанный;

  б) четырёхугольник <i>ABCD</i> симметричен относительно одной из своих диагоналей.

Натуральное число<i>b</i>назовём<i>удачным</i>, если для любого натурального<i>a</i>, такого, что<i>a</i><sup>5</sup>делится на<i>b</i>², число<i>a</i>² делится на<i>b</i>. Найдите количество удачных натуральных чисел, меньших 2010.

Пете и Васе подарили одинаковые наборы из <i>N</i> гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение <i>N</i>.

По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.

Дана окружность и точка<i> P </i>внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке<i> P </i>. Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.

Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.

Дан биллиард в форме правильного 1998-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>1998</sub>. Из середины стороны <i>A</i><sub>1</sub><i>A</i><sub>2</sub> выпустили шар, который, отразившись последовательно от сторон <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>4</sub>, ..., <i>A</i><sub>1998</sub><i>A</i><sub>1</sub> (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.

Окружности σ<sub><i>B</i></sub>, σ<sub><i>C</i></sub> – вневписанные для треугольника <i>ABC</i> (касаются соответственно сторон <i>AC</i> и <i>AB</i> и продолжений двух других сторон). Окружность ω<sub><i>B</i></sub> симметрична σ<sub><i>B</i></sub> относительно середины стороны <i>AC</i>, окружность ω<sub><i>C</i></sub> симметрична σ<sub><i>C</i></sub> относительно середины стороны <i>AB</i>. Докажите, что прямая, проходящая через точки пересечения окружностей ω<sub><i>B</i></sub> и ω<sub><i>C</i></sub>, делит периметр треугольника <i&gt...

В выпуклом четырёхугольнике <i>ABCD</i> провели биссектрисы <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> и <i>l<sub>d</sub></i> внешних углов при вершинах <i>A, B, C</i> и <i>D</i> соответственно. Точки пересечения прямых <i>l<sub>a</sub></i> и <i>l<sub>b</sub>, l<sub>b</sub></i> и <i>l<sub>c</sub>, l<sub>c</sub></i> и <i>l<sub>d</sub>, l<sub>d</sub></i> и <i>l<sub>a</sub></i> обозначили через <i>K, L, M</i> и <i>N</i>. Известно, что три перпендикуляра, опущенных из точки <i>K</i> на <i...

Четырёхугольник <i> ABCD </i> описан около окружности ω. Продолжения сторон <i>AB</i> и <i>CD</i> пересекаются в точке <i>O</i>. Окружность ω<sub>1</sub> касается стороны <i>BC</i> в точке <i>K</i> и продолжений сторон <i>AB</i> и <i>CD</i>; окружность ω<sub>2</sub> касается стороны <i>AD</i> в точке <i>L</i> и продолжений сторон <i>AB</i> и <i>CD</i>. Известно, что точки <i>O, K</i> и <i>L</i> лежат на одной прямой. Докажите, что середины сторон <i>BC, AD</i> и центр окружности ω лежат на одной прямой.

Дан треугольник <i>ABC</i>. В нём <i>H</i> – точка пересечения высот, <i>I</i> – центр вписанной окружности, <i>O</i> – центр описанной окружности, <i>K</i> – точка касания вписанной окружности со стороной <i>BC</i>. Известно, что отрезки  <i>IO || BC</i>.  Докажите, что отрезки  <i>AO || HK</i>.

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

На плоскости даны три красные точки, три синие точки и ещё точка <i>O</i>, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от <i>O</i> до любой красной точки меньше расстояния от <i>O</i> до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?

<i>n</i> бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр. <div align="center"><img src="/storage/problem-media/98412/problem_98412_img_2.gif"></div>

По кругу стоит 99 тарелок, на них лежат булочки (на тарелке может быть любое число булочек или вовсе их не быть). Известно, что на любых 20 подряд идущих тарелках лежит суммарно хотя бы $k$ булочек. При этом ни одну булочку ни с одной тарелки нельзя убрать так, чтобы это условие не нарушилось. Какое наибольшее суммарное число булочек может лежать на тарелках?

Дано натуральное число $n$. Натуральное число $m$ назовём<i>удачным</i>, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.

На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму единичного круга. Всегда ли можно вбить в стол несколько точечных гвоздей так, что все салфетки будут прибиты, причём одинаковым количеством гвоздей? (Вбивать гвозди на границы кругов запрещено.)

Дана окружность $\omega_1$, а внутри неё — окружность $\omega_2$. Выбирают произвольную окружность $\omega_3$, которая касается двух предыдущих, причём оба касания внутренние. Точки касания соединяют отрезком, а через точку пересечения этого отрезка с окружностью $\omega_2$ проводят касательную к $\omega_2$ и получают хорду окружности $\omega_3$. Докажите, что концы всех таких хорд (полученных при всевозможных выборах окружности $\omega_3$) лежат на фиксированной окружности.<img height="250" src="/storage/problem-media/67495/problem_67495_img_2.png">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка