Олимпиадные задачи по математике для 10 класса - сложность 2 с решениями
По кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?
По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.
На плоскости нарисовали кривые <i>y</i> = cos <i>x</i> и <i>x</i> = 100 cos(100<i>y</i>) и отметили все точки их пересечения, координаты которых положительны. Пусть <i>a</i> – сумма абсцисс, а <i>b</i> – сумма ординат этих точек. Найдите <sup><i>a</i></sup>/<sub><i>b</i></sub>.
Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений <i>F</i>(<i>x</i>) = 0, <i>G</i>(<i>x</i>) = 0, <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).
На доске написаны девять приведённых квадратных трёхчленов: <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub> и <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub> – арифметические прогрессии. Оказалось, что сумма все...
Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?
Числа <i>a</i> и <i>b</i> таковы, что <i>a</i>³ – <i>b</i>³ = 2, <i>a</i><sup>5</sup> – <i>b</i><sup>5</sup> ≥ 4. Докажите, что <i>a</i>² + <i>b</i>² ≥ 2.
На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?
Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.
Углы треугольника<i> α, β, γ </i>удовлетворяют неравенствам<i> sin α > cos β, sin β > cos γ, sin γ > cos α </i>. Докажите, что треугольник остроугольный.
По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
Дана неравнобокая трапеция <i>ABCD</i>. Точка <i>A</i><sub>1</sub> – это точка пересечения описанной окружности треугольника <i>BCD</i> с прямой <i>AC</i>,
отличная от <i>C</i>. Аналогично определяются точки <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub>, <i>D</i><sub>1</sub>. Докажите, что <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> – тоже трапеция.
Все целые числа от<i> -</i>33до100включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?
Найдите все пары чисел<i> x,y<img src="/storage/problem-media/110173/problem_110173_img_2.gif"> </i>(0<i>;<img src="/storage/problem-media/110173/problem_110173_img_3.gif"></i>), удовлетворяющие равенству<i> sin x+ sin y= sin</i>(<i>xy</i>).
Сфера, вписанная в пирамиду <i>SABC</i>, касается граней <i>SAB, SBC, SCA</i> в точках <i>D, E, F</i> соответственно.
Найдите все возможные значения суммы углов <i>SDA, SEB</i> и <i>SFC</i>.
Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число 1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.
В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?
На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?
На сторонах прямоугольного треугольника <i>ABC</i> построены во внешнюю сторону квадраты с центрами <i>D, E, F</i>.
Докажите, что отношение <i>S<sub>DEF</sub></i> : <i>S<sub>ABC</sub></i> а) больше 1; б) не меньше 2.
Пусть <i>n</i> – натуральное число. На 2<i>n</i> + 1 карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении *<i>x</i><sup>2<i>n</i></sup> + *<i>x</i><sup>2<i>n</i>–1</sup> + ... *<i>x</i> + * так, чтобы полученный многочлен не имел <i>целых</i> корней. Всегда ли это можно сделать?
Окружность ω касается сторон угла <i>BAC</i> в точках <i>B</i> и <i>C</i>. Прямая <i>l</i> пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>K</i> и <i>L</i> соответственно. Окружность ω пересекает <i>l</i> в точках <i>P</i> и <i>Q</i>. Точки <i>S</i> и <i>T</i> выбраны на отрезке <i>BC</i> так, что <i>KS || AC</i> и <i>LT || AB</i>. Докажите, что точки <i>P, Q, S</i> и <i>T</i> лежат на одной окружности.
Дан квадрат со стороной 10. Разрежьте его на 100 равных четырёхугольников, каждый из которых вписан в окружность диаметра <img align="absmiddle" src="/storage/problem-media/65727/problem_65727_img_2.gif">
В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)