Олимпиадные задачи из источника «2013-2014» для 8 класса

В государстве <i>n</i> городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на  <i>n</i> – 1  экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)

В республике математиков выбрали число  α > 2  и выпустили монеты достоинствами в 1 рубль, а также в α<i><sup>k</sup></i> рублей при каждом натуральном <i>k</i>. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?

Трапеция <i>ABCD</i> с основаниями <i>AB</i> и <i>CD</i> вписана в окружность Ω. Окружность ω проходит через точки <i>C, D</i> и пересекает отрезки <i>CA, CB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> соответственно. Точки <i>A</i><sub>2</sub> и <i>B</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> относительно середин отрезков <i>CA</i> и <i>CB</i> соответственно. Докажите, что точки <i>A, B, A</i><sub>2</sub> и <i>B</i><sub>2</sub> лежат на одной окружности.

К натуральному числу <i>N</i> прибавили наибольший его делитель, меньший <i>N</i>, и получили степень десятки. Найдите все такие <i>N</i>.

Точка <i>M</i> – середина стороны <i>AC</i> остроугольного треугольника <i>ABC</i>, в котором  <i>AB > BC</i>.  Касательные к описанной окружности Ω треугольника <i>ABC</i>, проведённые в точках <i>A</i> и <i>C</i>, пересекаются в точке <i>P</i>. Отрезки <i>BP</i> и <i>AC</i> пересекаются в точке <i>S</i>. Пусть <i>AD</i> – высота треугольника <i>BP</i>. Описанная окружность ω треугольника <i>CSD</i> второй раз пересекает окружность Ω в точке <i>K</i>. Докажите, что  ∠<i>CKM</i> = 90°.

В выпуклом <i>n</i>-угольнике проведено несколько диагоналей. Проведённая диагональ называется <i>хорошей</i>, если она пересекается (по внутренним точкам) ровно с одной из других проведённых диагоналей. Найдите наибольшее возможное количество хороших диагоналей.

Серёжа выбрал два различных натуральных числа <i>a</i> и <i>b</i>. Он записал в тетрадь четыре числа:  <i>a,  a</i> + 2,  <i>b</i> и  <i>b</i> + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.

Докажите, что хотя бы одно из этих чисел делится на 3.

Какое из чисел больше:  (100!)!  или  99!<sup>100!</sup>·100!<sup>99!</sup>?

Дан вписанный четырёхугольник <i>ABCD</i>. Лучи <i>AB</i> и <i>DC</i> пересекаются в точке <i>K</i>. Оказалось, что точки <i>B</i>, <i>D</i>, а также середины <i>M</i> и <i>N</i> отрезков <i>AC</i> и <i>KC</i> лежат на одной окружности. Какие значения может принимать угол <i>ADC</i>?

Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше?

Число <i>x</i> таково, что среди четырёх чисел   <img align="absmiddle" src="/storage/problem-media/64622/problem_64622_img_2.gif">   ровно одно не является целым.

Найдите все такие <i>x</i>.

Все клетки квадратной таблицы 100×100 пронумерованы в некотором порядке числами от 1 до 10000. Петя закрашивает клетки по следующим правилам. Вначале он закрашивает <i>k</i> клеток по своему усмотрению. Далее каждым ходом Петя может закрасить одну еще не закрашенную клетку с номером <i>a</i>, если для неё выполнено хотя бы одно из двух условий: либо в одной строке с ней есть уже закрашенная клетка с номером меньшим, чем <i>a</i>; либо в одном столбце с ней есть уже закрашенная клетка с номером большим, чем <i>a</i>. При каком наименьшем <i>k</i> независимо от исходной нумерации Петя за несколько ходов сможет закрасить все клетки таблицы?

Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и <i>N</i>, где  <i>N</i> > 5.  Какое наименьшее значение может иметь число <i>N</i>?

В четырёхугольнике <i>ABCD</i> стороны <i>AD</i> и <i>BC</i> параллельны.

Докажите, что если биссектрисы углов <i>DAC, DBC, ACB</i> и <i>ADB</i> образовали ромб, то  <i>AB = CD</i>.

Даны 111 различных натуральных чисел, не превосходящих 500.

Могло ли оказаться, что для каждого из этих чисел его последняя цифра совпадает с последней цифрой суммы всех остальных чисел?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка