Олимпиадные задачи из источника «2007-2008» для 11 класса - сложность 3-4 с решениями

В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее <i>x</i> часов  (<i>x</i> > 4).  Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от <i>x</i>)?

Числа <i>a, b, c</i> таковы, что уравнение  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> = 0  имеет три действительных корня. Докажите, что если  –2 ≤ <i>a + b + c</i> ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

При каких натуральных  <i>n</i> > 1  существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i>  (не все из которых равны), что при всех натуральных <i>k</i> число

(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>)  является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)

В блицтурнире принимали участие  2<i>n</i> + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее <i>n</i> игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  <i>x</i>² – <i>ax + b</i> = 0  и  <i>x</i>² – <i>bx + a</i> = 0  имеет два целых корня?

Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде  <i>x = a<sup>p</sup> + b<sup>p</sup></i>  (с натуральными <i>a, b</i>) при всех   <i>p</i> ∈ <i>P </i>  и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.

Пете и Васе подарили одинаковые наборы из <i>N</i> гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение <i>N</i>.

Даны положительные рациональные числа <i>a, b</i>. Один из корней трёхчлена  <i>x</i>² – <i>ax + b</i>  – рациональное число, в несократимой записи имеющее вид  <sup><i>m</i></sup>/<sub><i>n</i></sub>.  Докажите, что знаменатель хотя бы одного из чисел <i>a</i> и <i>b</i> (в несократимой записи) не меньше <i>n</i><sup>2/3</sup>.

На острове живут100рыцарей и100лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно100человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.

Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> таковы, что  <i>x</i><sub>1</sub> ≥ <i>x</i><sub>2</sub> ≥ ... ≥ <i>x<sub>n</sub></i> ≥ 0  и   <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_2.gif">   Докажите, что   <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_3.gif">

На диагонали <i>BD</i> вписанного четырёхугольника <i>ABCD</i> выбрана такая точка <i>K</i>, что  ∠<i>AKB</i> = ∠<i>ADC</i>.  Пусть <i>I</i> и <i>I'</i> – центры вписанных окружностей треугольников <i>ACD</i> и <i>ABK</i> соответственно. Отрезки <i>II'</i> и <i>BD</i> пересекаются в точке <i>X</i>. Докажите, что точки <i>A, X, I, D</i> лежат на одной окружности.

Вписанная окружность<i> σ </i>треугольника<i> ABC </i>касается его сторон<i> BC </i>,<i> AC </i>,<i> AB </i>в точках<i> A' </i>,<i> B' </i>,<i> C' </i>соответственно. Точки<i> K </i>и<i> L </i>на окружности<i> σ </i>таковы, что<i> <img src="/storage/problem-media/111797/problem_111797_img_2.gif"> AKB'+<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> BKA'=<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> ALB'+<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> BLA'=</i>180<i><sup>o</sup&g...

По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.

Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при <i>x</i>², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при <i>x</i>, то получатся трёхчлены, имеющие корни.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка