Олимпиадные задачи из источника «Региональный этап» для 10-11 класса - сложность 3-5 с решениями
Число <i>N</i>, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Докажите, что оно также представимо в виде суммы квадратов трёх целых чисел, не делящихся на 3.
Известно, что <img align="absmiddle" src="/storage/problem-media/110215/problem_110215_img_2.gif"> и <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>6</sub> = 0. Докажите, что <i>x</i><sub>1</sub><i>x</i><sub>2</sub>...<i>x</i><sub>6</sub> ≤ ½.
В каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку <i>правильной</i>, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными?
У выпуклого многогранника2<i>n </i>граней (<i> n<img src="/storage/problem-media/110213/problem_110213_img_2.gif"> </i>3), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?
При каких натуральных <i>n</i> найдутся такие положительные рациональные, но не целые числа <i>a</i> и <i>b</i>, что оба числа <i>a + b</i> и <i>a<sup>n</sup> + b<sup>n</sup></i> – целые?
Через точку пересечения высот остроугольного треугольника <i> ABC </i> проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.
Даны <i>n</i> > 1 приведённых квадратных трёхчленов <i>x</i>² – <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, ..., <i>x</i>² – <i>a<sub>n</sub>x + b<sub>n</sub></i>, причём все 2<i>n</i> чисел <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub>, b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> различны.
Может ли случиться, что каждое из чисел <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub>, b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> является корнем одного из этих трёхчленов?
Назовём раскраску доски 8×8 в три цвета <i>хорошей</i>, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 6<sup>8</sup>.
Какое минимальное количество клеток можно закрасить черным в белом квадрате 300×300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?
Докажите, что если натуральное число <i>N</i> представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
В тетраэдре<i> ABCD </i>из вершины<i> A </i>опустили перпендикуляры<i> AB' </i>,<i> AC' </i>,<i> AD' </i>на плоскости, делящие двугранные углы при ребрах<i> CD </i>,<i> BD </i>,<i> BC </i>пополам. Докажите, что плоскость(<i>B'C'D'</i>)параллельна плоскости(<i>BCD</i>).
В гоночном турнире 12 этапов и <i>n</i> участников. После каждого этапа все участники в зависимости от занятого места <i>k</i> получают баллы <i>a<sub>k</sub></i> (числа <i>a<sub>k</sub></i> натуральны, и <i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > ... > <i>a<sub>n</sub></i>). При каком наименьшем <i>n</i> устроитель турнира может выбрать числа <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
Произведение квадратных трёхчленов <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a<sub>n</sub>x + b<sub>n</sub></i> равно многочлену <i>P</i>(<i>x</i>) = <i>x</i><sup>2<i>n</i></sup> + <i>c</i><sub>1</sub><i>x</i><sup>2<i>n</i>–1</sup> + <i>c</i><sub>2</sub><i>x</i><sup>2<i>n</i>–2</sup> + ... + <i>c</i><sub>2<i>n</i>–1</...