Олимпиадные задачи из источника «Региональный этап» для 10 класса - сложность 2-4 с решениями

На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.

Существуют ли такие <i>n</i>-значные числа <i>M</i> и <i>N</i>, что все цифры <i>M</i> – чётные, все цифры <i>N</i> – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи <i>M</i> или <i>N</i> хотя бы один раз и <i>M</i> делится на <i>N</i>?

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

Дан биллиард в форме правильного 1998-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>1998</sub>. Из середины стороны <i>A</i><sub>1</sub><i>A</i><sub>2</sub> выпустили шар, который, отразившись последовательно от сторон <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>4</sub>, ..., <i>A</i><sub>1998</sub><i>A</i><sub>1</sub> (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.

Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.

Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?

Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.

Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?

В пятиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub> проведены биссектрисы <i>l</i><sub>1</sub>, <i>l</i><sub>2</sub>, ..., <i>l</i><sub>5</sub> углов <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A</i><sub>5</sub> соответственно. Биссектрисы <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub> пересекаются в точке <i>B</i><sub>1</sub>, <i>l</i><sub>2</sub> и <i>l</i...

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4,2<i></i>1998. Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.

В последовательности натуральных чисел {<i>a<sub>n</sub></i>},  <i>n</i> = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных <i>n</i> и <i>m</i> выполнено неравенство   <img align="absmiddle" src="/storage/problem-media/109941/problem_109941_img_2.gif">   Докажите, что тогда  |<i>a<sub>n</sub> – n</i>| < 2000000  для всех натуральных <i>n</i>.

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть<i> A </i>– количество черных отрезков на периметре,<i> B </i>– количество белых, и пусть многоугольник состоит из<i> a </i>черных и<i> b </i>белых клеток. Докажите, что<i> A-B=</i>4(<i>a-b</i>).

Имеется таблица <i>n×n</i>, в  <i>n</i> – 1  клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка