Олимпиадные задачи из источника «18 турнир (1996/1997 год)» для 10 класса - сложность 2-3 с решениями
18 турнир (1996/1997 год)
НазадПоложительные числа <i>a</i>, <i>b</i> и <i>c</i> таковы, что <i>abc</i> = 1. Докажите неравенство <div align="CENTER"> <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_2.gif"> + <img width="68" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_3.gif"> + <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_4.gif"> ≤ 1. </div>
2<i>n</i> шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на <i>n</i>, то она изменилась ровно на <i>n</i>.
В выпуклом шестиугольнике <i>AC</i><sub>1</sub><i>BA</i><sub>1</sub><i>CB</i><sub>1</sub> <i>AB</i><sub>1</sub> = <i>AC</i><sub>1</sub>, <i>BC</i><sub>1</sub> = <i>BA</i><sub>1</sub>, <i>CA</i><sub>1</sub> = <i>CB</i><sub>1</sub> и ∠<i>A</i> + ∠<i>B</i> + ∠<i>C</i> = ∠<i>A</i><sub>1</sub> + ∠<i>B</i><sub>1</sub> + ∠<i>C</i><sub>1</sub>.
Докажите, что площадь треугольника <i>ABC</i> равна половине площади шестиугольника.
Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
а) веса гирь набора все целые,
б) веса не обязательно целые?
Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?
Около правильного тетраэдра <i>ABCD</i> описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды <i>ABCD', ABDC', ACDB', BCDA'</i>, вершины которых лежат на этой сфере. Найдите угол между плоскостями <i>ABC'</i> и <i>ACD'</i>.
Центр круга – точка с декартовыми координатами (<i>a, b</i>). Известно, что начало координат лежит внутри круга. Обозначим через <i>S</i><sup>+</sup> общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через <i>S</i><sup>–</sup> – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину <i>S</i><sup>+</sup> – <i>S</i><sup>–</sup>.
<i>a</i> и <i>b</i> – натуральные числа. Известно, что <i>a</i>² + <i>b</i>² делится на <i>ab</i>. Докажите, что <i>a = b</i>.
Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину, отличную от 1 (у каждого из остальных ребро равно 1).
Найдите объём исходного куба.
Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?
Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете публикуется десятка проигрышных клеточек. Докажите, что
а) можно заполнить 13 карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
б) двенадцати карточек для этого недостаточно.
Пусть <i>A', B', C', D', E', F'</i> – середины сторон <i>AB, BC, CD, DE, EF, FA</i> произвольного выпуклого шестиугольника <i>ABCDEF</i>. Известны площади треугольников <i>ABC', BCD', CDE', DEF', EFA', FAB'</i>. Найдите площадь шестиугольника <i>ABCDEF</i>.
а) Докажите для всех <i>n</i> > 2 неравенство <img align="absmiddle" src="/storage/problem-media/98328/problem_98328_img_2.gif">б) Найдите какие-нибудь такие натуральные числа <i>a, b, c</i>, что для всех <i>n</i> > 2 <img align="absmiddle" src="/storage/problem-media/98328/problem_98328_img_3.gif">
На координатной плоскости <i>xOy</i> построена парабола <i>y = x</i>². Затем начало координат и оси стёрли.
Как их восстановить с помощью циркуля и линейки (используя имеющуюся параболу)?
Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер <i>a, b, c</i> этого куба.
Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
а) можно заполнить девять карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
б) восьми карточек для этого недостаточно.
Существует ли такое шестизначное число <i>A</i>, что среди чисел <i>A</i>, 2<i>A</i>, ..., 500000<i>A</i> нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?
Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?