Олимпиадные задачи из источника «15 турнир (1993/1994 год)» для 10 класса - сложность 1-2 с решениями

<i>D</i>– точка на стороне<i>BC</i>треугольника<i>ABC</i>. B треугольники<i>ABD, ACD</i>вписаны окружности, и к ним проведена общая внешняя касательная (отличная от<i>BC</i>), пересекающая<i>AD</i>в точке<i>K</i>. Докажите, что длина отрезка<i>AK</i>не зависит от положения точки<i>D</i>на<i>BC</i>.

{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт  1 – |1 – 2<i>x</i>|.

  а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.

  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:

  а) перевернуть четыре фишки, стоящие подряд;

&nbsp б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).

Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?

Последовательность натуральных чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, ...  такова, что для каждого <i>n</i> уравнение  <i>a</i><sub><i>n</i>+2</sub><i>x</i>² + <i>a</i><sub><i>n</i>+1</sub><i>x</i> + <i>a<sub>n</sub></i> = 0  имеет действительный корень. Может ли число членов этой последовательности быть

  а) равным 10;

  б) бесконечным?

В таблице

    0 1 2 3 ... 9

    9 0 1 2 ... 8

    8 9 0 1 ... 7

        ...

    1 2 3 4 ... 0

отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.

Докажите, что среди отмеченных элементов есть хотя бы два равных.

На кружок пришло 60 учеников. Оказалось, что среди каждых десяти из них есть не меньше трёх одноклассников.

Докажите, что среди кружковцев найдётся по меньшей мере 15 учеников, которые учатся в одном классе.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого <i>n</i> включительно:   12345678910111213...(<i>n</i>). Существует ли такое <i>n</i>, что в этой записи все десять цифр встречаются одинаковое количество раз?

На гипотенузе <i>AB</i> прямоугольного треугольника <i>ABC</i> взяты такие точки <i>M</i> и <i>N</i>, что  <i>BC = BM</i>  и  <i>AC = AN</i>.  Докажите, что  ∠<i>MCN</i> = 45°.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка