Олимпиадные задачи из источника «IX Олимпиада по геометрии имени И.Ф. Шарыгина (2013 г.)» для 11 класса - сложность 1-5 с решениями

Выпуклые многогранники <i>A</i> и <i>B</i> не имеют общих точек. Многогранник <i>A</i> имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из <i>A</i> и <i>B</i>, если <i>B</i> имеет

  а) 2012,

  б) 2013 плоскостей симметрии?

  в) Каков будет ответ в пункте б), если плоскости симметрии заменить на оси симметрии?

Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.

Докажите, что они пересекаются.

Дана окружность ω и точка <i>A</i> вне её. Через <i>A</i> проведены две прямые, одна из которых пересекает ω в точках <i>B</i> и <i>C</i>, а другая – в точках <i>D</i> и <i>E</i> (<i>D</i> лежит между <i>A</i> и <i>E</i>). Прямая, проходящая через <i>D</i> и параллельная <i>BC</i>, вторично пересекает ω в точке <i>F</i>, а прямая <i>AF</i> – в точке <i>T</i>. Пусть <i>M</i> – точка пересечения прямых <i>ET</i> и <i>BC</i>, а <i>N</i> – точка, симметричная <i>A</i> относительно <i>M</i>. Докажите, что описанная окружность треугольника <i>DEN</i&g...

На стороне <i>AB</i> треугольника <i>ABC</i> взята произвольная точка <i>C</i><sub>1</sub>. Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> на лучах <i>BC</i> и <i>AC</i> таковы, что  ∠<i>AC</i><sub>1</sub><i>B</i><sub>1</sub> = ∠<i>BC</i><sub>1</sub><i>A</i><sub>1</sub> = ∠<i>ACB</i>.  Прямые <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub> пересекаются в точке <i>C</i><sub>2</sub>. Докажите, что все прямые <i>C</i><sub>1</sub><i>C</i><sub>2</sub> п...

а) Вписанная окружность треугольника <i>ABC</i> касается сторон <i>AC</i> и <i>AB</i> в точках <i>B</i><sub>0</sub> и <i>C</i><sub>0</sub> соответственно. Биссектрисы углов <i>B</i> и <i>C</i> треугольника <i>ABC</i> пересекают серединный перпендикуляр к биссектрисе <i>AL</i> в точках <i>Q</i> и <i>P</i> соответственно. Докажите, что прямые <i>PC</i><sub>0</sub> и <i>QB</i><sub>0</sub> пересекаются на прямой <i>BC</i>.б) В треугольнике <i>ABC</i> провели биссектрису <i>AL</i>. Точки <i>O</i><sub>1</sub> и <i>O</i><s...

В треугольнике <i>ABC</i> проведена биссектриса <i>AD</i>. Точки <i>M</i> и <i>N</i> являются проекциями вершин <i>B</i> и <i>C</i> на <i>AD</i>. Окружность с диаметром <i>MN</i> пересекает <i>BC</i> в точках <i>X</i> и <i>Y</i>. Докажите, что  ∠<i>BAX</i> = ∠<i>CAY</i>.

Дан вписанный четырёхугольник, острый угол между диагоналями которого равен φ. Докажите, что острый угол между диагоналями любого другого четырёхугольника с теми же длинами сторон (идущими в том же порядке) меньше φ.

Вписанная в треугольник <i>ABC</i> окружность касается сторон <i>BC, CA, AB</i> в точках <i>A', B', C'</i> соответственно. Перпендикуляр, опущенный из центра <i>I</i> этой окружности на медиану <i>CM</i>, пересекает прямую <i>A'B'</i> в точке <i>K</i>. Докажите, что  <i>CK || AB</i>.

а) В треугольник <i>ABC</i> вписаны треугольники <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub> так, что  <i>C</i><sub>1</sub><i>A</i><sub>1</sub> ⊥ <i>BC</i>,  <i>A</i><sub>1</sub><i>B</i><sub>1</sub> ⊥ <i>CA</i>,  <i>B</i><sub>1</sub><i>C</i><sub>1</sub> ⊥ <i>AB</i>,  <i>B</i><sub>2</sub><i>A</i><sub>2</sub> ⊥ <i>BC</i>,  &...

Точки <i>M, N</i> – середины диагоналей <i>AC, BD</i> прямоугольной трапеции <i>ABCD</i>  (∠<i>A</i> = ∠<i>D</i> = 90°).  Описанные окружности треугольников <i>ABN, CDM</i> пересекают прямую <i>BC</i> в точках <i>Q, R</i>. Докажите, что точки <i>Q, R</i> равноудалены от середины отрезка <i>MN</i>.

На каждой стороне треугольника <i>ABC</i> отмечены две различные точки. Известно, что это основания высот и биссектрис.   а) Пользуясь только линейкой без делений, определите, где высоты, а где биссектрисы.  б) Решите пункт а), проведя только три прямых.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка