Назад
Задача

В треугольнике ABC проведена биссектриса AD. Точки M и N являются проекциями вершин B и C на AD. Окружность с диаметром MN пересекает BC в точках X и Y. Докажите, что  ∠BAX = ∠CAY.

Решение

Пусть B', C', X', Y' – точки, симметричные B, C, X, Y относительно биссектрисы MN. Тогда BB'CC' – равнобокая трапеция, диагонали которой пересекаются в точке L, инверсной A относительно окружности с диаметром MN. В этой же точке пересекаются диагонали равнобокой трапеции  XX' > YY',  вписанной в эту окружность. Боковые стороны этой трапеции пересекаются на поляре точки L, которая проходит через A и параллельна основаниям трапеции. В силу симметрии эта точка пересечения боковых сторон совпадает с A, что равносильно утверждению задачи (см. рис.).

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет