Олимпиадные задачи из источника «1997 год» - сложность 3 с решениями

На сторонах<i> AB </i>,<i> BC </i>и<i> AC </i>треугольника<i> ABC </i>взяты точки<i> C' </i>,<i> A' </i>и<i> B' </i>соответственно. Докажите, что площадь треугольника<i> A'B'C' </i>равна <center><i>

<img src="/storage/problem-media/108170/problem_108170_img_2.gif">,

</i></center> где<i> R </i>– радиус описанной окружности треугольника<i> ABC </i>.

Положительные числа <i>a</i>, <i>b</i> и <i>c</i> таковы, что  <i>abc</i> = 1.  Докажите неравенство <div align="CENTER"> <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_2.gif"> + <img width="68" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_3.gif"> + <img width="70" height="49" align="MIDDLE" border="0" src="/storage/problem-media/107843/problem_107843_img_4.gif"> ≤ 1. </div>

Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...

Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки  (1, 2, 4, 8, 1, 3, 6, 1, ...).

В круговом турнире не было ничьих, за победу присуждалось 1 очко, за поражение – 0. Затем был определен <i>коэффициент</i> каждого участника. Он равнялся сумме очков, набранных теми, кого победил данный спортсмен. Оказалось, что у всех участников коэффициенты равны. Число участников турнира больше двух. Докажите, что все спортсмены набрали одинаковое количество очков.

Даны такие действительные числа  <i>a</i><sub>1</sub> ≤ <i>a</i><sub>2</sub> ≤ <i>a</i><sub>3</sub>  и  <i>b</i><sub>1</sub> ≤ <i>b</i><sub>2</sub> ≤ <i>b</i><sub>3</sub>,  что <div align="CENTER"><i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub> = <i>b</i><sub>1</sub> + <i>b</i><sub>2</sub> + <i>b</i><sub>3</sub>,   <i>a</i><sub>1</sub><i>a</i><sub>2</sub> + <i>a</i><sub>2</sub><i>a</i><s...

Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.

Существует ли выпуклое тело, отличное от шара, ортогональные проекции которого на некоторые три попарно перпендикулярные плоскости являются кругами?

2<i>n</i> шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).

Докажите, что если сумма очков каждого изменилась не менее чем на <i>n</i>, то она изменилась ровно на <i>n</i>.

По окружности в одном направлении на равных расстояниях курсируют <i>n</i> поездов. На этой дороге в вершинах правильного треугольника расположены станции <i>A, B</i> и <i>C</i> (обозначенные по направлению движения). Ира входит на станцию <i>A</i> и одновременно Лёша входит на станцию <i>B</i>, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?

В выпуклом шестиугольнике <i>AC</i><sub>1</sub><i>BA</i><sub>1</sub><i>CB</i><sub>1</sub>   <i>AB</i><sub>1</sub> = <i>AC</i><sub>1</sub>,  <i>BC</i><sub>1</sub> = <i>BA</i><sub>1</sub>,  <i>CA</i><sub>1</sub> = <i>CB</i><sub>1</sub>  и  ∠<i>A</i> + ∠<i>B</i> + ∠<i>C</i> = ∠<i>A</i><sub>1</sub> + ∠<i>B</i><sub>1</sub> + ∠<i>C</i><sub>1</sub>.

Докажите, что площадь треугольника <i>ABC</i> равна половине площади шестиугольника.

а) Докажите, что существует натуральное число, которое при замене любой тройки соседних цифр на произвольную тройку остаётся составным.

б) Существует ли такое 1997-значное число?

Вычислите$\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка