Олимпиадные задачи из источника «1960 год» для 1-9 класса - сложность 2 с решениями
6<i>n</i>-значное число делится на 7. Последнюю цифру перенесли в начало. Доказать, что полученное число также делится на 7.
Имеется бесконечная шахматная доска. Обозначим через (<i>a, b</i>) поле, расположенное на пересечении горизонтали с номером <i>a</i> и вертикали с номером <i>b</i>. Фишка с поля (<i>a, b</i>) может сделать ход на любое из восьми полей: (<i>a ± m, b ± n</i>), (<i>a ± n, b ± m</i>), где <i>m, n</i> – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав <i>x</i> ходов, фишка вернулась на исходное поле. Доказать, что <i>x</i> чётно.
Каково наибольшее<i>n</i>, при котором так можно расположить<i>n</i>точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?
В каком-то году некоторое число ни в одном месяце не было воскресеньем. Определить это число.
Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
Даны 4 точки:<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>. Найти такую точку<i>O</i>, что сумма расстояний от неё до данных точек минимальна.
<i>a, b</i>и<i>n</i>– натуральные числа, и<i>n</i>нечётно. Докажите, что если числитель и знаменатель дроби <img align="absmiddle" src="/storage/problem-media/78218/problem_78218_img_2.gif"> делятся на<i>n</i>, то и сама дробь делится на<i>n</i>.
Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.
Через данную вершину<i>A</i>выпуклого четырёхугольника<i>ABCD</i>провести прямую, делящую его площадь пополам.
В турнире каждый шахматист половину всех очков набрал во встречах с участниками, занявшими три последних места.
Сколько всего человек принимало участие в турнире?
Доказать: число делителей <i>n</i> не превосходит 2<img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/78208/problem_78208_img_2.gif">.
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?
3 равные окружности с центрами<i>O</i><sub>1</sub>,<i>O</i><sub>2</sub>,<i>O</i><sub>3</sub>пересекаются в данной точке.<i>A</i><sub>1</sub>,<i>A</i><sub>2</sub>,<i>A</i><sub>3</sub>— остальные точки пересечения. Доказать, что треугольники<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>и<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>равны.
Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)