Олимпиадные задачи из источника «1945 год» для 9 класса
Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...<i>a</i><sub>n</sub>равны +1, остальные равны -1. Доказать, что<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="LEFT">2 sin$\displaystyle \left(\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right.$<i>a</i><sub>1</sub> + $\displaystyle {\frac{a_1a_2}{2}}$ + $\displaystyle {\frac{a_1a_2a_3}{4}}$ + ... + $\displaystyle {\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}$$\displaystyle \left.\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi...
Решить в целых числах уравнение <i>xy</i> + 3<i>x</i> – 5<i>y</i> = – 3.
Сторона <i>AD</i> параллелограмма <i>ABCD</i> разделена на <i>n</i> равных частей. Первая точка деления <i>P</i> соединена с вершиной <i>B</i>.
Доказать, что прямая <i>BP</i> отсекает на диагонали <i>AC</i> часть <i>AQ</i>, которая равна <sup>1</sup>/<sub><i>n</i>+1</sub> части диагонали: <i>AQ = <sup>AC</sup></i>/<sub><i>n</i>+1</sub>.
Из картона вырезали два одинаковых многоугольника, совместили их и проткнули в некоторой точке булавкой. При повороте одного из многоугольников около этой "оси" на25<sup><tt>o</tt></sup>30<sup>$\scriptstyle \prime$</sup>он снова совместился со вторым многоугольником. Каково наименьшее возможное число сторон таких многоугольников?
Даны 6 цифр: 0, 1, 2, 3, 4, 5. Найти сумму всех четырёхзначных чётных чисел, которые можно написать этими цифрами (одна и та же цифра в числе может повторяться).
К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.
Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.
Двузначное число в сумме с числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти все такие числа.
Доказать, что при любом целом положительном <i>n</i> сумма <img align="MIDDLE" src="/storage/problem-media/76502/problem_76502_img_2.gif"> больше ½.
Разделить <i>a</i><sup>128</sup> – <i>b</i><sup>128</sup> на (<i>a + b</i>)(<i>a</i>² + <i>b</i>²)(<i>a</i><sup>4</sup> + <i>b</i><sup>4</sup>)(<i>a</i><sup>8</sup> + <i>b</i><sup>8</sup>)(<i>a</i><sup>16</sup> + <i>b</i><sup>16</sup>)(<i>a</i><sup>32</sup> + <i>b</i><sup>32</sup>)(<i>a</i><sup>64</sup> + <i>b</i><sup>64</sup>).
Вершины <i>A, B, C</i> треугольника соединены с точками <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub>, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub>, <i>CC</i><sub>1</sub> лежать на одной прямой?