Олимпиадные задачи из источника «1974 год» для 2-9 класса - сложность 4-5 с решениями
Прямоугольный лист бумаги размером<i>a</i>×<i>b</i>см разрезан на прямоугольные полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны сторонам исходного листа. Доказать, что хотя бы одно из чисел<i>a</i>или<i>b</i>целое.
Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
При каких <i>n</i> правильный <i>n</i>-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)
Для каких <i>n</i> существует такая замкнутая несамопересекающаяся ломаная из <i>n</i> звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?
На<i>n</i>карточках, выложенных по окружности, записаны числа, каждое из которых<nobr>равно 1</nobr><nobr>или –1.</nobr>За какое наименьшее число вопросов можно наверняка определить произведение всех<nobr><i>n</i> чисел,</nobr>если за один вопрос разрешено узнать произведение чисел на<nobr>а) любых</nobr>трёх карточках;<nobr>б) любых</nobr>трёх карточках, лежащих подряд? (Здесь<nobr><i>n</i> —</nobr>натуральное число,<nobr>большее 3).</nobr>
а) На плоскости даны<i>n</i>векторов, длина каждого из которых<nobr>равна 1.</nobr>Сумма всех<i>n</i>векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех<nobr><i>k</i> = 1,</nobr>2, ...,<i>n</i>выполнялось следующее условие: длина суммы первых<nobr><i>k</i> векторов</nobr>не<nobr>превышает 3.</nobr>б) Докажите аналогичное утверждение для <i>n</i> векторов с <nobr>суммой 0,</nobr> длина каждого из которых не <nobr>превосходит 1.</nobr> в) Можно ли заменить <nobr>число 3</nobr> в <nobr>пункте а)</nobr> меньшим? Постарайтесь улучшить оценку и в <nobr>пункте б).</nobr>
Обозначим через <i>T<sub>k</sub></i>(<i>n</i>) сумму произведений по <i>k</i> чисел от 1 до <i>n</i>. Например, <i>T</i><sub>2</sub>(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
а) Найдите формулы для <i>T</i><sub>2</sub>(<i>n</i>) и <i>T</i><sub>3</sub>(<i>n</i>).
б) Докажите, что <i>T<sub><i>k</i></sub></i>(<i>n</i>) является многочленом от <i>n</i> степени 2<i>k</i>.
в) Укажите метод нахождения многочленов <i>T</i><sub><i>k</i></sub>(<i>n</i>) при <i>k</i> = 2, 3, 4, ... и примените его для о...
Окружность разбита точками<i>A</i><sub>1</sub>,<i>A</i><sub>2</sub>,...,<i>A</i><sub><i>n</i></sub>на<nobr><i>n</i> равных</nobr>дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги<i>A</i><sub>2</sub><i>A</i><sub>6</sub>и<i>A</i><sub>6</sub><i>A</i><sub>10</sub>одинаково окрашены.)Докажите, что если для каждой точки разбиения <i>A</i><sub><i>k</i><...
Вычислите квадратный корень из числа 0,111...111<nobr>(100 единиц)</nobr>с точностью до<nobr>а) 100;</nobr><nobr>б) 101;</nobr><nobr>в)* 200</nobr>знаков после запятой.
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных <i>n</i>-угольников верно аналогичное утверждение?
Квадрат 6×6 нужно заполнить 12 плитками, из которых <i>k</i> имеют форму уголка, а остальные 12 – <i>k</i> – прямоугольника. При каких <i>k</i> это возможно?
С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.