Олимпиадные задачи из источника «выпуск 3»
выпуск 3
НазадВычислите квадратный корень из числа 0,111...111<nobr>(100 единиц)</nobr>с точностью до<nobr>а) 100;</nobr><nobr>б) 101;</nobr><nobr>в)* 200</nobr>знаков после запятой.
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных <i>n</i>-угольников верно аналогичное утверждение?
Дано<i>n</i>фишек нескольких цветов, причём фишек каждого цвета не<nobr>более <i>n</i>/2.</nobr>Докажите, что их можно расставить на окружности так, чтобы никакие две фишки одинакового цвета не стояли рядом.
С помощью циркуля и линейки постройте треугольник по центрам описанной, вписанной и одной из вневписанных окружностей.