Олимпиадные задачи из источника «глава 9. Геометрические неравенства» для 10 класса
глава 9. Геометрические неравенства
НазадДан выпуклый четырёхугольник и точка <i>M</i> внутри него. Доказать, что сумма расстояний от точки <i>M</i> до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.
Дан$\Delta$<i>ABC</i>и точка<i>D</i>внутри него, причем<i>AC</i>-<i>DA</i>> 1 и<i>BC</i>-<i>BD</i>> 1. Берётся произвольная точка<i>E</i>внутри отрезка<i>AB</i>. Доказать, что<i>EC</i>-<i>ED</i>> 1.
В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
Докажите, что этот лес можно огородить забором длиной 200 м.
В параллелограмм <i>P</i><sub>1</sub> вписан параллелограмм <i>P</i><sub>2</sub>, а в параллелограмм <i>P</i><sub>2</sub> вписан параллелограмм <i>P</i><sub>3</sub>, стороны которого параллельны сторонам <i>P</i><sub>1</sub>. Докажите, что длина хотя бы одной из сторон <i>P</i><sub>1</sub> не превосходит удвоенной длины параллельной ей стороны <i>P</i><sub>3</sub>.
Дан четырёхугольник <i>ABCD</i>. Докажите, что <i>AC·BD ≤ AB·CD + BC·AD</i>.
Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.
Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.