Олимпиадные задачи из источника «глава 28. Инверсия» для 2-9 класса - сложность 4 с решениями
Даны четыре окружности <i>S</i><sub>1</sub>,<i>S</i><sub>2</sub>,<i>S</i><sub>3</sub>,<i>S</i><sub>4</sub>. Пусть <i>S</i><sub>1</sub>и <i>S</i><sub>2</sub>пересекаются в точках <i>A</i><sub>1</sub>и <i>A</i><sub>2</sub>,<i>S</i><sub>2</sub>и <i>S</i><sub>3</sub> — в точках <i>B</i><sub>1</sub>и <i>B</i><sub>2</sub>,<i>S</i><sub>3</sub>и <i>S</i><sub>4</sub> — в точках <i>C</i><sub>1</sub>и <i>C</i><sub>2</sub>,&...
Окружность<i>S</i><sub>A</sub>проходит через точки<i>A</i>и<i>C</i>; окружность<i>S</i><sub>B</sub>проходит через точки<i>B</i>и<i>C</i>; центры обеих окружностей лежат на прямой<i>AB</i>. Окружность<i>S</i>касается окружностей<i>S</i><sub>A</sub>и<i>S</i><sub>B</sub>, а кроме того, она касается отрезка<i>AB</i>в точке<i>C</i><sub>1</sub>. Докажите, что<i>CC</i><sub>1</sub> — биссектриса треугольника<i>ABC</i>.
Две окружности, пересекающиеся в точке <i>A</i>, касаются окружности (или прямой) <i>S</i><sub>1</sub>в точках <i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>, а окружности (или прямой) <i>S</i><sub>2</sub>в точках <i>B</i><sub>2</sub>и <i>C</i><sub>2</sub>(причем касание в <i>B</i><sub>2</sub>и <i>C</i><sub>2</sub>такое же, как в <i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>). Докажите, что окружности, описанные вокруг треугольников<i>AB</i><sub>1</sub><i>C</i><sub>1</sub>и <i>AB</i><sub...
Через точки <i>A</i>и <i>B</i>проведены окружности <i>S</i><sub>1</sub>и <i>S</i><sub>2</sub>, касающиеся окружности <i>S</i>, и окружность <i>S</i><sub>3</sub>, перпендикулярная <i>S</i>. Докажите, что <i>S</i><sub>3</sub>образует равные углы с окружностями <i>S</i><sub>1</sub>и <i>S</i><sub>2</sub>.
Никакие три из четырех точек <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>не лежат на одной прямой. Докажите, что угол между описанными окружностями треугольников<i>ABC</i>и <i>ABD</i>равен углу между описанными окружностями треугольников<i>ACD</i>и <i>BCD</i>.
В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу <a href="https://mirolimp.ru/tasks/156701">3.44</a>).
Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках <i>A</i>и <i>B</i>.
С помощью одного циркуля постройте окружность, в которую переходит данная прямая<i>AB</i>при инверсии относительно данной окружности с данным центром <i>O</i>.
Через данную точку проведите окружность, касающуюся двух данных окружностей (или окружности и прямой).
Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).