Олимпиадные задачи из источника «параграф 6. Цепочки окружностей»

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением<i>d</i><sup>2</sup>=<i>r</i><sub>1</sub><sup>2</sup>+<i>r</i><sub>2</sub><sup>2</sup>±6<i>r</i><sub>1</sub><i>r</i><sub>2</sub>(к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).

<div align="center"><img src="/storage/problem-media/58359/problem_58359_img_2.gif" border="1"></div>

Докажите, что для двух непересекающихся окружностей <i>R</i><sub>1</sub>и <i>R</i><sub>2</sub>цепочка из <i>n</i>касающихся окружностей (см. предыдущую задачу) существует тогда и только тогда, когда угол между окружностями <i>T</i><sub>1</sub>и <i>T</i><sub>2</sub>, касающимися <i>R</i><sub>1</sub>и <i>R</i><sub>2</sub>в точках их пересечения с прямой, соединяющей центры, равен целому кратному угла360<sup><tt>o</tt></sup>/<i>n</i>(рис.).

<div align="center"><img src="/storage/problem-media/58358/problem_58358_img_2.gif" border="1"></div>

Докажите, что если существует цепочка окружностей<i>S</i><sub>1</sub>,<i>S</i><sub>2</sub>,...,<i>S</i><sub>n</sub>, каждая из которых касается двух соседних (<i>S</i><sub>n</sub>касается <i>S</i><sub>n - 1</sub>и <i>S</i><sub>1</sub>) и двух данных непересекающихся окружностей <i>R</i><sub>1</sub>и <i>R</i><sub>2</sub>, то таких цепочек бесконечно много. А именно, для любой окружности <i>T</i><sub>1</sub>, касающейся <i>R</i><sub>1</sub>и <i>R</i><sub>2</sub>(одинаковым образом, если <i>R</i><sub>1</sub>и ...

Окружности<i>S</i><sub>1</sub>,<i>S</i><sub>2</sub>,...,<i>S</i><sub>n</sub>касаются двух окружностей <i>R</i><sub>1</sub>и <i>R</i><sub>2</sub>и, кроме того,<i>S</i><sub>1</sub>касается <i>S</i><sub>2</sub>в точке <i>A</i><sub>1</sub>,<i>S</i><sub>2</sub>касается <i>S</i><sub>3</sub>в точке <i>A</i><sub>2</sub>...,<i>S</i><sub>n - 1</sub>касается <i>S</i><sub>n</sub>в точке<i>A</i><sub>n - 1</sub>. Докажите, что точки<i>A</i><sub>1</sub&g...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка