Олимпиадные задачи из источника «глава 19. Гомотетия и поворотная гомотетия» для 8 класса
глава 19. Гомотетия и поворотная гомотетия
НазадИмеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.
По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки <i>A</i> и <i>B</i>.
Докажите, что существует такая точка <i>P</i>, что в любой момент времени <i>AP</i> : <i>BP = k</i>, где <i>k</i> – отношение скоростей.
На окружности фиксированы точки <i>A</i> и <i>B</i>, а точка <i>C</i> движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников <i>ABC</i>.
Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.
Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.