Олимпиадные задачи из источника «параграф 5. Признаки делимости» для 2-11 класса - сложность 1-5 с решениями

Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.

Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Докажите, что если необходимый и достаточный признак делимости, выражающийся через свойства цифр числа, не зависит от порядка цифр, то это признак делимости на 3 или на 9.

Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости:

  1) число делится на 5 тогда и только тогда, когда сумма его цифр делится на 5;

  2) число делится на 7 тогда и только тогда, когда число, составленное из двух его последних цифр, делится на 7.

а) Опишите все системы счисления, в которых число делится на 2 тогда и только тогда, когда сумма его цифр делится на 2.б) Решите задачу, заменив модуль 2 произвольным натуральным числом  <i>m</i> > 1.

С помощью признака делимости Паскаля (см. задачу <a href="https://mirolimp.ru/tasks/160815">160815</a>) установите признаки делимости на числа 3, 9, 6, 8, 12, 15, 11, 7, 27, 37.

Пусть запись числа <i>N</i> в десятичной системе счисления имеет вид   <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>1</sub><i>a</i><sub>0</sub></span> ,   <i>r<sub>i</sub></i> – остаток от деления числа 10<sup><i>i</i></sup> на <i>m</i>  (<i>i</i> = 0, ..., <i>n</i>).

Докажите, что число <i>N</i> делится на <i>m</i> тогда и только тогда, когда число  <i>M = a<sub>n</sub>r<sub>n</sub> + a</i><sub><i>n</i>–1</sub><i>r</i><sub>&...

Двое пишут  а) 30-значное;  б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?

Докажите, что если числа <i>N</i> и 5<i>N</i> имеют одинаковую сумму цифр, то <i>N</i> делится на 9.

Найдите все такие трёхзначные числа, которые в 12 раз больше суммы своих цифр.

При каких <i>x</i> и <i>y</i> число  <span style="text-decoration: overline;"><i>xxyy</i></span>  является квадратом натурального числа?

Аналогичные указанному в задаче <a href="https://mirolimp.ru/tasks/160808">160808</a> признаки делимости существуют и для всех чисел вида  10<i>n</i> ± 1  и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?

Существует следующий способ проверить, делится ли данное число <i>N</i> на 19:

  1) отбрасываем последнюю цифру у числа <i>N</i>;

  2) прибавляем к полученному числу произведение отброшенной цифры на 2;

  3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.

  4) если остается 19, то 19 делится на <i>N</i>, в противном случае <i>N</i> не делится на 19.

Докажите справедливость этого признака делимости.

Докажите, что в записи числа 2<sup>30</sup> есть по крайней мере две одинаковые цифры, не вычисляя его.

Коля Васин выписал пример на умножение, а затем заменил все цифры буквами: одинаковые цифры одинаковыми буквами, а разные – разными. Получилось равенство  <span style="text-decoration: overline;"><i>ab</i></span>·<span style="text-decoration: overline;"><i>cd</i></span> = <span style="text-decoration: overline;"><i>effe</i></span>.  Не ошибся ли Коля?

Докажите ошибочность следующих записей:

  а)  4237·27925 = 118275855;

  б)  42971064 : 8264 = 5201;

  в)  1965² = 3761225;

  г)  <img width="66" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60804/problem_60804_img_2.gif"> = 23.

На доске написано число 8<sup><i>n</i></sup>. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если  <i>n</i> = 2001?

Докажите, что если  <i>n</i> > 6  – чётное совершенное число, то его цифровой корень (см. задачу <a href="https://mirolimp.ru/tasks/160794">160794</a>) равен 1.

Два числа <i>a</i> и <i>b</i> получаются друг из друга перестановкой цифр. Чему равен цифровой корень (см. задачу <a href="https://mirolimp.ru/tasks/160794">160794</a>) числа  <i>a – b</i>?

Какие цифровые корни (см. задачу <a href="https://mirolimp.ru/tasks/160794">160794</a>) бывают у полных квадратов и полных кубов?

Найдите наименьшее число, запись которого состоит лишь из нулей и единиц, делящееся на 225.

Последовательность {<i>x<sub>n</sub></i>} устроена следующим образом:  <i>x</i><sub>1</sub> = 3<sup>2001</sup>,  а каждый следующий член равен сумме цифр предыдущего. Найдите <i>x</i><sub>5</sub>.

Докажите, что число  <span style="text-decoration: overline;"><i>abcd</i></span>  делится на 99 тогда и только тогда, когда число  <span style="text-decoration: overline;"><i>ab</i></span> + <span style="text-decoration: overline;"><i>cd</i></span>  делится на 99.

Докажите, что число 192021...7980 делится на 1980.

Делится ли на 9 число 1234...500? (В записи этого числа подряд выписаны числа от 1 до 500.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка